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I, INTRODUCTION

The characteristics of wave propagation along helical structures
have been utilized in several applications, including antennas and
traveling wave tubes., In these applications an understanding of device
characteristics can be obtained by solving Maxwell's equations subject
to the appropriate boundary conditions. The device to be considered
here is the normal mode helical dipole antenna (NMHD).

The helical antenna has many possible modes of radiation as discussed
by Kraus [1]. The axial mode occurs when the circumference of the helix
is on the order of one wavelength and is characterized by radiation along
the axis of the helix. In this mode the helix is a broadband antenna, with
axial radiation possible over a range of nearly one octave in frequency.
An array of axial mode helices was built by Kraus [2] in 1952 for radio
astronomy at Ohio State University.

Another possible mode of radiation from a helix is called the normal
mode, so named because the maximum radiation is in a plane normal to the
axis of the helix. The normal mode occurs when the diameter of the helix
is small compared to one wavelength. A NMHD is a he7ix radiating in the
normal mode which is driven at its midpoint.

The NMHD has several characteristics of interest from an engineering
viewpoint. Since the helix is a slow wave structure as noted by Collin
and Zucker [ 3], the resonant length of a NMHD is shorter than that for
a linear dipole for a given resonant frequency. Thus the NMHD has potential

application in size reduction of antennas. Stephenson (4] has



characterized this size reduction by shortening factor s. For a NMHD
with halflength h in its first resonance, s = 4h/lo where Ko is the free
space wavelength at the resonant frequency.

The polarization of the radiation from a NMHD is, in general,
elliptical, with a large axial ratio when the helix diameter is very
small compared to a wavelength. Wheeler [5] has established a design
criterion for which the radiation from a NMHD will be circularly polarized.

The possibility of using a NMHD as a superdirective antenna was
noted by Stephenson and Mayes [ 6], who calculated that in its second
resonance the NMHD with s ~ 0.3 displayed greater directivity than the
half-wave linear dipole antenna and that no sidelobes were present. These
calculations were based upon an assumed sinusoidal current distribution.
Lain, Ziolkowski, and Mayes [7] calculated and measured characteristics
of the NMHD in its second and higher order resonances. Their calculations
were also based upon an assumed sinusoidal current distribution.

The problem of determining the current distribution along a helix
has been approached in several ways. The helix has been approximated by
an infinitely long sheath helix, for which Maxwell's equations can be
solved, as by Li [8]. Sensiper [9] has an excellent review of wave
propagation on helices and includes a solution of the infinite tape

helix problem, assuming a real axial propagation constant. Klock [ 10]

also solves the infinite tape helix problem, but for a complex axial
propagation constant. Lain, Ziolkowski, and Mayes [7] found that the
tape helix solution yielded a better approximation to the resonant

frequency of a NMHD than did Li's sheath helix solution. It should be



noted that these solutions are for structures of infinite length and are
not for a wire helix of finite length.

Marsh [ 11] measured the current distribution along a helical antenna
and interpreted the distribution in terms of three different traveling
wave modes along the helix. His To mode is that mode which exists on a
small diameter helix and displays a large VSWR. Lain, Ziolkowski, and
Mayes [ 7] measured current distribution along several helices and observed
an approximately sinusoidal standing wave pattern along the antennas.

At the present time no one has been able to solve analytically the
finite length helix with circular conductor as a boundary value problem.
As a result, all calculations predicting the behavior of the NMHD are
based upon some assumed current distribution, usually sinusoidal. It
is the purpose of this work to determine the current distribution for the
NMHD by numerically solving the boundary value problem, Other character-
istics of interest can easily be calculated from the current distribution.

The antenna considered here is a NMHD where the helix is right-handed,
and the conductor is assumed to be copper wire. The NMHD is assumed to
be excited at its midpoint by a slice voltage generator as discussed by
King [12]. This NMHD is examined in its first two resonant modes and
the current distribution, input impedance, bandwidth, efficiency, and
directive gain are calculated.

The numerical technique used is the matrix method developed by
Harrington (13, 14]. 1In this method Maxwell's equations are applied to
a thin conducting wire. A thin wire is one for which the length is much

greater than the radius and the radius is much less than one wavelength.



The wire is then approximated by many segments. Then integrals are
approximated by summations and derivatives by finite differences. A
linear system of equations is then formed which can be solved to give

the current distribution on the antenna for the assumed excitation. Once
the current distribution is determined, the field pattern for the antenna
can easily be calculated,

Harrington and Mautz [ 157 used this method to calculate the current
distribution for several linear antennas. Strait and Hirasawa [ 16]
applied this method to arrays of linear antennas. The matrix method was
applied to arbitrary configurations of bent wires by Chao and Strait [17].
While in principle Chao and Strait's program could be used to solve the
NMHD problem, practical considerations dictated that a new program be
written.

When many segments are necessary to approximate the antenna, most
of the computer time used in the matrix method is consumed in the solution
of the linear system to determine current distribution. Since the time
required to solve a linear system by elimination is proportional to the
cube of the order of the system for large systems, the system should be
kept as small as possible if use of excessive computer time is to be
avoided. When an antenna is symmetric about its midpoint, the order of
the system can be reduced by a factor of almost one-half. Accounting
for antenna symmetry thus allows the linear system to be solved about
eight times faster than can be done without accounting for symmetry. Also
note that the storage necessary for the linear system with symmetry con-

sidered is about one-fourth that required if symmetry is ignored. Since



the program of Chao and Strait [ 17] was written for a general antenna,
it does not account for symmetry.

In solving a system of linear equations there are three factors
which must be considered, especially if the system to be solved is large.
These factors are speed, storage required, and accuracy. For a large
system the time required to solve the system is approximately equal to
N3T/3 for Gauss elimination and equal to N3T for inversion, where N is
the order of the system and T is the machine time required for one
multiplication (one complex multiplication if the system is complex).

To these multiplication times must be added the time required for the
pivot search, if any. Pivot searching is done to minimize round-off
error as discussed by Fox [ 18] and Wilkinson [ 19].

In Chao and Strait's [ 17] program the linear system for current
distribution is solved by inversion. Unless the current distribution for
many different excitations of the same antenna at the same frequency must
be calculated, solution of the system by Gauss elimination as suggested
by Fox [ 18] is about three times faster than by inversion, not counting
the time spent in the pivot search.

Pivot selection is usually done by either of two methods. The first
method, partial pivoting, involves searching the pivot column for an
appropriate pivot element. In the second method, complete pivoting, all
elements below and to the right of the last pivot element are examined
in the search for the next pivot element. In most pivot selection schemes
the element with largest modulus is chosen as pivot. With real numbers

the modulus is just the absolute value of an element, which can be



evaluated very quickly., With complex numbers, however, the evaluation of
the modulus of an element is much slower. For example the IBM 360/65
computer can evaluate an absolute value in less than one microsecond,
while determining the modulus of a complex number requires over one
hundred microseconds, using the CABS function in FORTRAN as noted in [20].
To illustrate the possible significance of pivot search time,
consider subroutine LINEQ given by Chao and Strait [17], This routine
looks much like IBM's MINV matrix inversion routine, modified for complex
numbers. When LINEQ is used on the 360/65, the evaluation of CABS in
the pivot search consumes as much time as the rest of the inversion
process., A similar situation exists in the case of CGELG, a Gauss
elimination routine available at the Iowa State University Computation
Center. This complex pivoting routine also spends about as much time
evaluating CABS in the pivot search as is needed to solve the system.
Another possible pivot selection scheme involves choosing the element
with greatest norm as pivot, where the norm used is the sum of the absolute
value of the real plus the absolute value of the imaginary parts of the
element. While this scheme usually results in use of a different pivot
element than would be used when the modulus is evaluated, it should be
noted that the modulus of the pivot element chosen by this norm scheme
is never smaller than /2/2 times the modulus of the pivot element when
selected for largest modulus., Extensive numerical examples were run
which showed that use of this norm pivot selection scheme yielded accuracy
comparable to that obtained using the time consuming modulus evaluation.

Numerical examples showed that Chao and Strait's [17] complex matrix



inversion routine LINEQ could be executed twice as fast using the norm
pivot selection scheme as compared to the modulus scheme.

After trying several methods to solve the linear system for the
current distribution, it was concluded that Gauss elimination with partial
pivoting using the norm pivot selection scheme suggested here should be
used in the numerical solution of the NMHD because of the speed with
which this method could solve the system., Numerical experiments indicated
that for the systems solved here the accuracy of this method was similar
to that obtained using a Gauss elimination routine with complete pivoting
where the pivot was determined on the basis of modulus, The partial
pivoting Gauss elimination routine used is subroutine SGEA listed in the
Appendix, ©Note that this routine solves the linear system for current
distribution about six times faster than LINEQ and about two and one-half
times faster than CGELG. Note also that since the program developed here
accounts for symmetry, the current distribution can be calculated about
forty-eight times faster than would be possible using the program of
Chao and Strait [17]. Since the numerical work done here required several
hundred dollars worth of computer time, it is clear that the factor of
forty-eight is quite significant.

Since the NMHD in its second resonance is not a very efficient
antenna, as noted by Stephenson and Mayes [ 6], the determination of
radiation efficiency for the NMHD is an important part of this work.

The program of Chao and Strait [17] does not calculate radiation efficiency.
Weeks [21] defines radiation efficiency to be the ratio of the radiated

power to the input power, The input power and the radiated power differ



by the power dissipated by the antenna. The dissipated power is due to
the ohmic loss of the copper wire. In order to account for the finite
conductivity of copper, the a.c. resistance of each segment is calculated
in the program developed here; Then the linear system to be solved for
current distribution is modified to account for this a.c. resistance.
After the current distribution has been found, the ohmic loss for each
segment is calculated. The dissipated power is just the sum of these
ohmic losses. The radiation efficiency is then easily obtained.

Due to computational considerations, bandwidth is calculated from
an equivalent circuit model for the antenna. The input impedance for
the antenna is calculated for two frequencies near resonance, and then
a series R, L, C circuit model is determined for the antenna as suggested
by Jordan and Balmain [22]. The bandwidth of the antenna is then defined
to be the bandwidth of this series model. Bandwidths calculated in this
way gave close agreement with those found by calculating the input
impedance of the antenna at many frequencies., Calculated bandwidths of
a few tenths of one percent are found to give close agreement with those
measured by Stephenson and Mayes [ 6] and Lain, Ziolkowski, and Mayes [ 7]
for the NMHD in its second resonance.

The computer program listed in the Appendix is suitable for numerical
investigation of the characteristics of the NMHD. Current distribution,
input impedance, radiation resistance, efficiency, and directive gain can
be determined with this program. The numerical results given are found
to agree reasonably well with the experimental work of Stephenson and

Mayes [6] and also that of Lain, Ziolkowski, and Mayes [7].



II. NUMERICAL METHOD

The electric field E° scattered from a conductor placed in an

impressed field E' is given by Harrington [23] as

E’ = -jwA -V8 (1)
where
- Je~
A = u.§ R ds (2)
S
_‘kR
_1 g gedT
§ == & = ds 3)
S
l —— p—
o = -3 7 «eJ %)

with angular frequency W, vector magnetic potential K; scalar electric
potential &, permeability u, surface current density 3, propagation
constant k, permittivity ¢, surface charge density o, and the distance
from a source point on the surface s of the conductor to the field
point is denoted by R. The boundary condition that tangential electric

field be zero at the conductor surface is accounted for by
A -s A —1i
nX EC = -nXE (5)
A - -
at the conductor surface where n is the unit vector normal to the

surface of the conductor.
If the conductor is a thin wire with length much greater than

radius, and radius much less than a wavelength at the frequency of

interest, we assume
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i) current flows along the axis of the wire

ii) current and charge densities are filaments of current I
and charge ¢ .on the wire axis

.o A, =s Ay =i | . .

iii) n X E~ = - n X E~ is applied only to the axial component
of E at the surface of the conductor.

Under these assumptions we can write
il . 22
- E% = J&AL S (6)

at the surface of the wire, and

- T(1ye IR
A=IJ'I Hé&—d& (7)

- jkR
s=lp ae 4 (8)

€ r 4mR
- .1 dI ,
T T 5w & €

where 4 is the length variable along the wire axis andI' denotes the
path traced out by the wire axis,

The axis of the wire is divided into N segments with the nth segment
denoted by starting point n-, midpoint n, and termination point n+, as
shown in Figure 1. The boundary condition that the current is zero at
the ends of the wire is accounted for by the extra half segment at each
end of the wire, as shown in Figwe 1. The integrals of (7) and (8)
are approximated by summations and the derivatives of (6) and (9) are

approximated by finite differences as discussed by Henrici [24] and
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Figure 1. Wire axis divided into N segments
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Varga [25]. With these approximations (6), (7), (8), and (9) can be

written in the form

. + -
- Ep(m) ~ -jus, (m) - 2@ a— (10)

at the surface of the wire, and

- N _ eJ
A@) ~p £ I(m) [ = (11)
n=1 M
n
N -jkR
+ 1 + 3=
dm) ~ = nil o) [ S at (12)
AL
n+
. . X _ o~ JkR
@(m)z;nzlc(n ) [ @ (13)
A
n
+ 1 | 1(atl) -
C'(n ) ~ - j_w [ (n'*'Ag N I(n)] (14)
n
c(n-) ~ - 3(%)_ [I(B)A£ I(n-l)] (15)
-

where A&n, A£ﬁ+, and A&n- are the lengths of the segments from n to
ﬁ+, from n to n+l, and from n-1 to n, respectively. Since the o's are
given in terms of a linear combination of the I's by (14) and (15),
clearly the &'s of (12) and (13) can also be expressed as a linear com-

bination of the I's, as can A in (11). Thus igl(m) can be expressed
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as a linear combination of the I's.

Let
(11 ] rfiu) - BT,
1(2) El@) - M,
(1 = . , and [V] = . (16)
—-i . —
I(N) -E (N) M,N-

Since Elj:(m)A&m=El(m)oA—£m is a linear combination of the I's, we can write

v = [z1[1] (17)

where the elements of [Z] can be obtained by rearranging (10) through

(15) into the form of (17). Note that an arbitrary element of [2] is

given by
- Flcw) AL
z = E"(m) ALm/I(n) (18)
"due to
I(n)"
where
fi(m) = - Es(m) on s. (19)
"due to due to
I(n)" | I(n)

In a typical antenna problem the elements of [V] and the geometry
of the wire axis are known, while the current distribution [11 is unknown.

If the elements of [Z] can be calculated from the geometry, then the
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current distribution can be obtained by solving the linear system of
(17). In the computer programs of Strait and Hirasawa [16] and of
Chao and Strait [17], the inverse of [ 27 is calculated and then the

current distribution is found using
(1] =[zTYv) (20)

Unless the current distribution for many different excitations [V] of
the same antenna at the same frequency must be determined, solution of
the linear system of (17) by Gauss elimination or one of the equiwvalent
methods, is faster than forming the inverse of [2]. For large systems
{(17) can be solved approximately three times faster by Gauss elimination
than by the corresponding inversion method as noted by Fox [ 18].
The integrals in (11), (12), and (13) are of the same form and will
be denoted by
- 1
. j‘ . kR (EF)
Y(m,n) = ;75— ———F=c dg’ 1)
where Rmn(Q') is the distance between the point m and a source point
on the nth segment as shown in Figure 2. Similarly,
- ’
JkRm+n+(§ )

+ <+ 1 e ’
(m , = —7— df (22)
Y(m ,n) 4l + IAL Rm+n+(g )

where Rm+d+(C') is the distance between the point m and a source point
- - - + -
on ALﬁ+ . Expressions for ¢y(m ,n ), $y(m ,n ), and w(ﬁ+,n ) follow

directly. The evaluation of these § integrals will be considered later.
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L=-axis

Figure 2, Local cylindrical coordinate system
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Let the nth segment be represented by a current filament I(n) and

two filaments of net charge

q@®) = J—U’j I(n), q@) = - J—; I(n) (23)

vhere q = cAd. The vector potential at m due to I(n) is, by (11),

A@)  =uwI@M_¥(m,n) (24)

due to

I(n)

The scalar potentials at ﬁ+ and m due to the charges of (23) are, by

(12) and (13),

+
sh = UL y@hah 25)
due to
q(nh)
s@h =B y@ha) 26)
due to
q(n’)
+
) =1 y@ ) 7)
due to
q(n+)
smy = ﬁz—)- Y@ ,n7) (28)
due to

| at)
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The substitution of (23) into (25) through (28) gives

3(n) = s I@¥@ ") -y ,n)] (29)
due to n
seguent
3 (") = == 1m0 -y @ ,07)] (30)
th %€
due to n
segment

Now the substitution of (24), (29), and (30) into (10) gives

i EZQ.EZA
E, (m) = jup I(n) =7~ ¥ (m,n)
"due to m
I(n)"
I(n + -+ + - - + - -
+j—w§Z&Lm[¢(m 0 =4 ,nT) - ¥ (@ ,n) +i @ ,n0)]
L)
at the conductor surface.
Note that
El(m) - M = EX(m)AL (32)
m m {, m
"due to "due to
I(n)" I(n)"

The substitution of (32) into (31) gives

Elm ¢ B, = joI(e) B, B ¥(m0)

+ 28 [y @0 -y @) -y @ e Fy@ )]

33
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Now the elements of [Z] can be found by substituting (33) into (18)

which gives
zmn = pr,A&m . A&nﬂl (m,n)

+ J%e [pmt,n™ -y @ ,n™) -v @ oD+ @ )] (34)

Since ZZ;I'ZZ; is easily obtained from the geometry, all that remains
to be done is the evaluation of the | integrals and then each element

of [Z] can be calculated.

Recall that

. -ikR_ (€1
e ’
¥ @) = Zoar IM R ¢ (21)

n

where {’ is some integration point along the {-axis of a cylindrical
coordinate frame in which the C-axis is tangent to element A&n at its

midpoint n as shown in Figure 2,

Harrington [13] suggests that Rmn(g') be approximated by

( -
Vol + €¢H? Lm#n
Roa &0~ < 1 (35)
a® + (¢’ »m=n
.

where a is the radius of the wire. Iet O ALn/Z . Then (21) can be

written in the form
- 4
o -ikR_ (T

- 1 e 7
¥ (m,n) = 5= [a @) dac (36)
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Harrington [ 13] gives formulas for evaluating (36) based on five-
term Maclaurin expansions for the Green's function. One formula is
developed which converges well for small R, that is for R < 10x¢, and
another is given which converges well for R 2 10 . These formulas were
used in the programs of Strait and Hirasawa [ 16] and Chao and Strait [17]
and are also used here in subroutine CAZZ listed in the Appendix.

Losses due to the finite conductivity of the wire can easily be
accounted for. At high frequencies the resistance of each segment is
due to the skin effect, as discussed by Hayt [26] and by Adler, Chu,
and Fano [27]. The resistance per segment can be calculated using the
formulas given in the popular ITT handbook [287. This resistance must
be added to the self-impedance of each element, that is, to the diagonal
elements of [Z], before the linear system of (17) is solved,

In order to calculate the radiated (scattered) field, an appropriate

numerical formula must be formed. Recall that the scattered field is
given by

=-jwA -v 8 (1)

For a field point remote from the antenna (a point in the far-field) the
scalar potential need not be considered since it does not contribute to
the far-field of the antenna. It is convenient to work in the spherical
coordinate system of Figure 3. Since only tﬁe ® and & components of ES

contribute to the radiation field, all that must be evaluated is

Eg(®) = -july () G
EZ(;) = -ijé(?) (38)



Figure 3.

20

Spherical coordinate system for evaluation of vector
potential A(r)



21

where l;l is sufficiently large that the field point is indeed in the

far-field.

The wvector magnetic potential due to a filament of current is

known to be

- _I-I‘jk';";l

-

r |z -7

where r denotes the field point, t ' denotes a source point on the

filament, and I" is the path traced out by the filament. This integral

may be evaluated numerically using

- " N InA—{,ne-jklr B rnl
A(r) ~ 7 z — — (40)
n n=1 |r - rnl

where Inﬁn is the current element along the nth segment located by

position vector r . For Irl >> Irnl , this integral can be written as

-jklr - rnl

- u N InA&ne
A(x) = 5— Z (41)
by n=1 l;‘
Note that ;n cannot be neglected in the phase expression.
Now for |r| >> I;nl we have
(42)

I* - ;nl ~ |T] - l;nl cos§ =r -7 cos S,

where §n is the angle between T and ;n as shown in Figure 3. Finally,

the vector field may be calculated using
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- e N . jkrrl cos §n
A(r) ~ TTE-— 51 InA&ne (43)

and (43) can be substituted into (37) and (38) to find the far-field.
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III. APPLICATION OF THE NUMERICAL METHOD TO THE NMHD

In order to apply the matrix method of Harrington [ 13] to the NMHD,
it is necessary to first examine the geometry of the NMHD. The wire axis
of a NMHD is shown in Figure 4. This helix is characterized by mean

diameter D, pitch p, and halflength h., The pitch angle v is given by

- -1 p
Y = tan D (44)

The axis of the helix is assumed to lie along the z-axis with the feed
point (midpoint) at x = 0, y = D/2, z = 0. The axis of the wire lies

along the helix characterized by the parametric equations

- 2 sin (2"—") 45)

%6

<
I
N
0
)
3
N
N

where ~h<z<h . The wire radius is denoted by a.

The axis of the wire is divided into N equal length segments (plus
two half-segments at the wire ends) where N is odd. The segments are
numbered consecutively from one to N, from the segment with most negative

z-component to that with most positive z-component, respectively. Note

that the feed point is at the (N+1)/2 th segment. Each segment n has
a beginning point n,a midpoint n, and a termination point n . Let

z-(n), z(n), and z+(n) denote the z-coordinate of n , n, and n ,

respectively. Clearly we can write
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M
< M+
o)

Figure 4. Geometry of a normal

mode helical dipole

Y
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z(n) = Az(n - N ; L ) 47)

2°(n) = z(a) - 22 (48)

]

z+(n) z(n) + é% (49)

where Az = 2h/(N + 1) is the length of the projection of one segment
onto the z-axis. The x and y coordinates of points n, n—, and n+ can
easily be found by the substitution of (47), (48), and (49) into (45)

and (46).

Let AL denote the length of each segment. This length can be

evaluated using the line integral

Az
AL =J(; [(g—’;)z + (%5)2 + 1% az (50)

along helix

When (45) and (46) are substituted into (50), the result is
Drr, 2 %
AL = Azl (—5) + 1] (51)

In addition to the coordinates describing the helix, unit vectors
s s . . - +
pointing along the helix are needed at all points n , n, and n . Let
A - A A+ . X
b(n ), b(n), and b(n ) denote unit vectors along the wire axis at the

- +
points n , n, and n , respectively. It is clear that

A A A
G(n) = - a_cosycos [&r—:—gﬂl] - aycosysin[%—iﬁﬂl]+ a_siny

(52)
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A - A A A A
with similar expressions for b(n ) and b(ﬁ+), where a s ay, and a,
are unit vectors along the x, y, and z axis respectively, of Figure 4.
An arbitrary element of [ 2] as given by (34) can be written in

the form

Z = jw Lzﬁ ﬁ
o = J0udTb_ b ¥ (m,n)

+ J—j;e— [¢@ ,n") =¥ @ ,n") -¥@ ,n") +¥ @ ,n")] (53)
where ,
. -5RR_(C')
-1 e __a’
"lJ (m:n) 4t . Rmn(g;) C (54)

For the geometry considered here, { (m,n) = ¢(m-,n-) = ¢(m+,d+),
¢(m-,n+) = { (m,n+1), and $(ﬁ+,n-) = y(m,n-1). Thus (53) can be

writt2n as

= 3 Lz A . A 1 [2
Zon = 30uA7b "B Y (@m,n) + 2 [20@un) - ¥ (m,041) - ¥ (m,n-1)]
(55)

Note that from the geometry it is obvious that the N2 elements of [Z]

can be written in terms of N distinct elements Zr’ such that

Z =12 (56)

where r = |m - nI*—l. Thus we can write

[z] = ’ . 57
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In a similar manner we can write

y(mn) = §_ (58)
1 b -
where the § 's form the sequence {wr. ¥io ¥os ooy o ¢N+1} and
¢1 ={(m,m) and ¢N+1 = W(l-,N+). Thus (55) can be written as
. 2 A
Zlm-n|+1—3wu‘{' gm bnwlm-nl-i-l
+ == [2y -y -y ]
jwe lm-n|+1 |m-n-1|+1 Im-n+1|+1
(59
This can be expressed in the form
[ 1
Jue (¥ = 2y ) » r=1
. 2
Zr = jupd Brﬂrr + { (60)
1
jwe [zwr wr-l - ¢r+1] » T #l
.

A A
where Br = b1° b1+r . The Z's of (60) are calculated in subroutine CAZZ,

listed in the Appendix. The ¥'s are evaluated in this routine using the

formulas given by Harrington [ 13].
Now the problem symmetry must be considered. Recall that the

linear system to be solved for current distribution is of the form

[zl[1] =[v] (61)

where [Z] is N by N (N odd) and [V] and [i] are both N-element column

vectors. For the NMHD considered here, the excitation is assumed to be

a unit amplitude voltage generator located at the midpoint of the
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antenna. Under this assumption the elements of [V] are all zero, except
for the (N+1)/2 th element, which is unity. Due to the symmetry of [Zz]

and [V], [ I] will have the form

4
)
= I (62)
(1] Tt
e 2
I
i
Now the linear system can be written out as
12 0
2o 4 : :
wal o s (63)
-* - 2
I2 0
VA Z I 0
| N b I L
Define permutation matrix [J] such that
0 1
[J] = - (64)
1 0o

Clearly the system of (63) can be written in partitioned form as
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A a B d 0
al ¢ 2ty e = |1 (65)
BT Jj2 A 33 0

where A, B, and J are (N+1)/2 by (N+1)/2 matrices, a, d, and O are
(N+1)/2 element column vectors, and c, e, and 1 are scalar quantities.

Note that superscript T denotes transpose. Multiplying out (65) gives

Ad +ae +BJd =0 (66)
ETE'+ ce + aTJJE =1 (67)
T— -— __—

B'd + Jae + AJd = 0 (68)

The equivalence of (66) and (68) can be shown by premultiplying both

sides of (68) by J to give

JBd +ae +JAJd =0 (69)

Note that JJ = I, the identity matrix, JAJ = A, and JBJ = BT. Clearly
then, BJ = JBT and the equivalence of (66) and (68) is shown.
A reduced system of linear equations which can be solved for the

current distribution can be formed from (66) and (67), such that

d 0

o

A + BJ
(70)

i

0
®
=t

22T

This reduced system has order (M1)/2. The elements cf the coefficient

matrix for the reduced system are just linear combinations of the Zr's

of (60) and are easily found. Subroutine CAZR, listed in the Appendix,
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forms this coefficient matrix, Note that BJ is merely a resubscripting
process which can be accomplished very quickly.

The effect of finite wire conductivity is accounted for by adding
the a.c. resistance per segment to Zl’ that is, to the self impedance
of each segment.

The linear system of (70) is solved for the NMHD current distribu-~
tion using subroutine SGEA, listed in the Appendix. This is a Gauss
elimination algorithm, as previously noted. In order to check the accuracy
of the solution, subroutine VCHK is used., In this subroutine the cal-
culated current distribution is used in (70) and the corresponding
excitation is calculated. A comparison of this with the assumed excita-
tion can then be made,

In order to calculate the directive gain of the NMHD, the total
radiated power as well as the radiated fields must be calculated. The
radiated fields are easily determined using (43), (37), and (38). In
principle the total radiated power could be obtained by integrating the
radiated power demnsity over a sphere surrounding the antenna. It is
simpler, however, to note that the radiated power equals the input power

minus the dissipated power. The input power Pin is just

-3 *
Pin %> Re (VI ) (71)

vhere V is the amplitude of the source voltage and I* is the complex
conjugate of the antenna current at the midpoint. The power dissipated
Pdiss can be found by summing the ohmic losses due to the a.c. resistance
of each segment. Thus
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R N

=52 2 |1(w)|? (72)

P..
diss n=1

where Rs is the a.c. resistance per segment. The radiated power is

Prad = Pin - Pdiss (73)

Since the radiation field of the NMHD contains both the 8 and the ¢
components of electric field, and a comparison of each component is of

interest, directive gains for each component are defined such that

1 2
7 |Eg(x,0,9)]

Ge(rse:d) = S 74)
(e}
X |E (x,0 d)!z
Gy(x,0,6) = 2n ¢ (75)
s
[o)

where So = Prad/(¢nr2) and r is the distance from the antenna to the
far-field point of interest andm is the intrinsic impedance of free
space, Subroutines CORD and GAIND are used to calculate these directive

gains for the NMHD.,
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IV. NUMERICAL RESULTS

The numerical method was applied to five NMHD's for both the first
and second resonances. Each antenna consisted of twenty-five turns of
A. W. G, number twelve copper wire, The axial halflength and the pitch
of each helix was fixed at twenty-five centimeters and two centimeters,
respectively., Only the diameter of the helix was varied in these numerical

experiments. The dimensions of the antennas are given in Table 1.

Table 1. Helix dimensions

Antenna Halflength Pitch Diameter Pitch angle vy
designation cm, cm, cm, degrees
HD - 10A 25 2 2.0 17.66
HD - 13A 25 2 2.6 13.76
HD - 16A 25 2 3.2 11.25
HD - 18A 25 2 3.6 10.03
HD - 20A 25 2 4,0 9.04

The antennas of Table 1 were each approximated by two hundred fifty-
one segments, plus the extra half-segment at each end., Thus each turn of
the helix was represented by about ten segments. The results of the
numerical analysis of these antennas in the first and second resonances
are summarized in Tables 2 and 3, respectively., The results include the
free space resonant wavelength Xo, shortening factor s (s = 4h/Ko for

the first resonance and s = 4h/(3ko) for the second resonance), input



Table 2, Summary of numerical results for first resonance

Antenna Xo Shortening Rin Rrad Efficiency Bandwidth Directivity

designation meters factor s ohms ohms % % 8-component

HD - 10A 1.8205 0.5493 27.73  27.26 98.3 6.62 1.542
HD - 13A 2.2071 0.4531 19.65 19.10 97.2 4,08 1.523
HD - 16A 2.6508 0.3772 14.20 13.58 95.7 2,71 1.508
HD - 18A 2,9768 0.3359 11,60 10.94 94,3 2,10 1.499

HD - 20A 3.3225 0.3010 9.61 8,91 92,8 1.50 1,492

X




Table 3.

Summary of numerical results for second resonance

Antenna Ko Shortening Rin Rrad Efficiency Bandwidth Directivity
designation meters factor s ohms ohms % % 6-component
HD - 10A 0.6473 0.5150 9.95 9.22 92,7 1.06 2,853
HD - 13A 0,.8131 0.4100 6,70 5.88 87.8 0.68 2,614
HD - 16A 1,0040 0.3320 5,10 4,20 82,4 0.50 2,279
HD - 18A 1,1434 0.2915 4,44 3.50 78.8 0.45 2,060
HD - 20A 1.2915 0,.2581 3.93 2.94 75.0 0.42 1,889

7e
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resistance Rin at resonance, radiation resistance Rrad at resonance,
radiation efficiency, percent bandwidth, and directivity or maximum
directive gain for the 6 component of the far-field.

The results are presented graphically in Figures 5 -through 9. The
sidelobe level in the second resonance is shown in Figure 10. The
measurements by Lain, Ziolkowski, and Mayes [7] of some of these character-
istics for the second resonance are included on the appropriate figures
for comparison. Stephenson and Mayes'[ 6] calculated directivity, based
on an assumed sinusoidal current distribution, is included on Figure 8
for comparison.

For each resonance of each antenna a numerical solution was found
at two wavelengths near resonance. By linear interpolation of the input
reactance calculated at these two wavelengths, a good approximation to
the resonant wavelength was obtained. The input resistance, radiation
resistance, efficiency, and directivity at resonance were also found by
linear interpolation. The slope of the input reactance near resonance
and the input resistance at resonance were then used to obtain a R, L, C
series equivalent circuit for the NMHD near resonance. The bandwidth
of the NMHD was then defined to be the bandwidth of this equivalent circuit,
Bandwidth was determined in this manner in order to reduce the total
amount of computer time used. In preliminary numerical experiments in
which the helices were approximated by one hundred fifty-one segments,
bandwidth determined from the equivalent circuit was found to agree very
closely with bandwidth obtained by extensive numerical experiments, where

the latter bandwidth was defined to be the range of frequency over which
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the input reactance was less than the input resistance at resonance,

The numerical results also include the current distribution
I= |IlLé along the antennas, as well as the directive gain patterns
in the x-z plane for both components of far-field. These results are
shown in Figures 11 through 20 for the NMHD's near their first resonances,
and in Figures 21 through 30 for the NMHD's near their second resonances.
The phase plots in Figures 21, 25, 27, and 29 indicate an abrupt change in
phase angle ¢ from -180° to +180°. This 360° change has no physical signi-~
ficance and is due to the way é is calculated, such that -180°< é< 180°,

It should be noted that the choice of the number of segments to use
in approximating the NMHD is a compromise. 1In general, the use of more
segments will result in more accuracy in the solution, but will require
_ more computer time and storage area. A reasonable way to choose the
number of segments to use, and that used here, ipvolves a comparison of
two solutions to the problem. First the problem should be solved using
a small number of segments, perhaps six per turn. Then the same problem
should be solved using a greater number of segments. By comparing these
two solutions one can ascertain if the solution seems to have converged
to the degree required. If not, then the use of more segments is
necessary, Of particular usefulness in this comparison are plots of
the current distribution., For the NMHD's considered here it was found
that the calculated current distribution was somewhat irregular when one
hundred fifty-one segments were used, while the distribution was smooth

when two hundred fifty-one segments were used,
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Figure 5., Shortening factor s as a function of mean helix diameter D
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Figure 29, Current distribution for HD-20A near second resonance,
s = 0.2581




HO2O0R 251 SEGMENTS
X=1_2914% METERS

I

2.40

.60
|

HRIZ@TION

& POL
0.80

{ [ | 38 1]
O y.oo 2.00 y.ao 6.00 9.00
S0 - e IN DEGREES tx1a!

To T T T =T
.Qg 3.00

.ao y.00 5
S0 - e IN DEGREES (x10! )

Figure 30. Directive gain for HD-20A near second resonance, s = 0,2581



63

V. DISCUSSION

While the .aumber of numerical examples considered was small, the
results do provide insight into the characteristics of the NMHD, Of
particular interest are the calculated current distributions for the
second resonance, shown in Figures 21, 23, 25, 27, and 29, If the current
distribution were truly sinusoidai, then there wouid be a nuii in the
current distribution at z = h/3. This value of z is indicated on the
figures by a short vertical line. Note that the null actually occurs
at a somewhat larger value of z, This null displacement indicates that
the phase velocity for the finite helix is a function of position. This
result has not, to the author's knowledge, been calculated previously.
Note that the current distribution drops off rather abruptly near the end
of the helix. This dropping off, or end effect, occurs along the last
turn of the helix, and appears to be similar to the end capacitance effect
for a linear dipole. <the end effect indicates that the phase velocity is
smaller near the helix end than near the midpoint. Also note that the peak
in the current distribution at about z=0.17 is not as big as the peak at
z = 0., This suggests that the propagation constant is complex, a result
not surprising in view of the lossy wire conductor considered here.

The radiation efficiency as a function of shortening factor is
shown in Figure 7. Although the results shown are for only one size
of copper wire, it is expected that the radiation efficiency for a
NMHD would decrease as the diameter of the wire decreased. For example,
when the wire size for HD-16A was reduced from number twelve to number

eighteen in an additional numerical example, the calculated radiation
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efficiency for the second resonance changed from about eighty-two percent
to about seventy percent,

As interesting comparison can be made between the second resonance
input resistance calculated here and that measured by Lain, Ziolkowski,
and Mayes [7]. As shown in Figure 6 the measured input resistance, for
a given value of s, is greater than the calculated here. This apparent
discrepancy is probably due to the fact that the geometry for the
measured antennas was different than that for those considered here.

Both the measured and the numerically modeled antennas were resonant

in the same frequency range. The measured antennas consisted of A. W. G.
number sixteen tinned copper wire for which the a.c. resistance per unit
length at the resonant frequency is, depending on the tin thickness,
about four times that for the number twelve copper wire considered here,
Thus the losses for the measured antennas should be greater than those
for the antennas considered here, and the input resistance for the
measured antennas should be greater than for those considered here.

A comparison between the second resonance directivity determined
here and the directivity that Stephenson and Mayes [6] calculated by
assuming a sinusoidal current distribution is shown in Figure 8. The
discrepancy for small values of s seems to be due to the fact that in
the work of Stephenson and Mayes the diameter of the NMHD was assumed
to be very small, so that the cross-polarized field was negligible.

For the NMHD's considered here the cross-polarized field is not negligible,
particularly for the small values of s. From Figure 30 where s = 0.2581,

note that the directivity for the é-polarization (the cross-polarization)
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is about 0.18, while that for the O6-polarization is about 1.89. When
these are added the result is 2.07, which agrees well with Stephenson
and Mayes' calculated value. In a similar manner the two curves can
be made to agree closely for s < 0.4, The discrepancy for s > 0.4 is
not well understood, but it is probably due to the fact that the current
distribution on a NMHD is not quite sinusoidal.

The directivity for a linear half-wave dipole can be calculated
to be 1,64 by assuming a sinusoidal current distribution. In one
additional example the diameter of the helix was set to zero, such that
the helix degenerated into a linear antenna. The directivity of this
antenna was then calculated t¢-be 1.64%.

The ratio of the directivity for the 8-polarization to that for
the d-polarization is also of interest., The square root of this direc-
tivity ratio is equal to the axial ratio AR of the elliptically polarized
field for the antenna. Kraus [1] develops a formula for axial ratio
based on approximating a NMHD by a series of linear e lements and loops.
The formula is

2pko

"

ki

(76)

When the axial ratio is calc:.lated for HD-1CA at its first resonance
using (76), the result is 18.5. From Figure 21 the directivity ratio
is found to be 339. The square root of this directivity ratio is 18.4,
which compares very closely with that from Kraus' formula. In a similar

manner the axial ratio determined from the results here for HD-20A in

its first resonance is 8.41, compared to 8.44 using (76).
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The sidelobe level calculated here for the second resonance is
compared to that measured by Lain, Ziolkowski, and Mayes [7] in Figure 9.
The agreement is pretty close, allowing for the somewhat different antenna
geometries. 1In both the calculations and the measurements the sidelobe
structure was found to disappear for s less than about 0.3.

Second resonance bandwidths calculated here and those measured
by Lain, Ziolkowski, and Mayes [7] are compared in Figure 10. Again
the agreement is probably as close as can be expected, considering the
differing geometries,

In conclusion, the matrix method has been used to solve the NMHD
problem, and has yielded results comparable to those obtained by other
investigators, Of particular significance here are the results which
indicate that the phase velocity along the finite helix is a function
of position., This conclusion cannot be reached on the basis of the
sinusoidal current distribution assumed by others, and would be quite
difficult to measure.

The computer program listed in the Appendix can be used for
additional numerical investigations of the NMHD. The user is cautioned
to consider his problem carefully before applying this program to an
arbitrary NMHD. 1In particular, he should ascertain that the assumptions

upon which this method is based are satisfied for his problem.
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VIII. APPENDIX: COMPUTER PROGRAM LISTING

This program calculates the current distribution, input impedance,
radiation resistance, efficiency, and directive gain for a NMHD. The
NMHD is assumed to be a rigﬁt-handed helix with a copper wire conductor.
The excitation is assumed to be a slice voltage generator of one volt
peak amplitude located at the midpoint of the antenna., The program
consists of a main program and six subroutines, which are listed after
the main program.

As written, the program allows a maximum of two hundred fifty-one
segments to be used in the helix approximation. More segments can be
used by changing the dimensioning statements. When compiled in H-level
FORTRAN, the execution time for this program, using two hundred fifty-one
segments to approximate the helix, is about fifty seconds on the IBM
360/65 computer.

While the program was written for copper conductors, other conductors
can be used by changing line ninety-four in the main program.

Note that while the program is written to calculate directive gain,
power gain can be calculated if desired. 1In order to calculate power
gain, line one hundred forty-seven of the main program should be changed
to read

CALL GAIND(RO,DTHET,PHI,PIN)

If power -gain is calculated, line thirty of the main program should be

changed to note this fact.
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MATIN PROGRAM

MAIN
MAIN

THIS PROGRAM AND ITS ASSOCIATED SUBROUTINES CALCULATE THE CURRENT MAIN
DISTRIBUTION, INPUT IMPEDANCE, RADIATION RESISTANCE, EFFICIENCY, MAIN
AND DIRECTIVE GAIN FOR A HELICAL DIPOLE ANTENNA WITH MAIN
WAVE = FREE SPACE WAVELENGTH IN METERS, MAIN
THE CURRENT DISTRIRUTIGON IS CALCULATED FOR AN EXCITATION VOLTAGE MAIN
OF ONE VULT PEAK LOCATED AT THE MIDPOINT OF THE ANTENNA, MAIN
THE ANTENNA IS ASSUMED TO BE A RIGHT-HANDED HELIX, THAT 1S, THE MAIN
WIRE CONDUCTOR TRACES JUT THE PATH OF A RIGHT=-HANDED SCREWe MAIN
NOTE THAT THE WIRE IS ASSUMED TQ BF COPPER, MAIN
MAIN

FORMAT('1'y ' THE DIMENSIONS OF THE ANTENNA FOLLOW',/) MAIN
FORMAT('0*'y* THE RADIUS OF THE WIRE IS',1PElbeb,? METERS?) MAIN
FORMAT (0%, ' THE MEAN HELIX RADIUS IS ',1PEl6eH," METERS') MAIN
FORMAT ("0, THE HELIX HALFLENGTH IS *,1PEl6e6,* METERS?) MAIN
FORMAT('0',! THE PITCH OF THE HELIX [S*,1PEl6e6,* METERS?) MAIN
FORMAT('0'y* THE HELIX PITCH ANGLE IS *,1PE16e6," DEGREZES?) MAIN
FORMAT('0" ¢ THE CURRENT IS MNONZERG ALONG® ¢T26,13,T46,'SEGMENTS!) MAIN
FORMAT('0%y' THE FREE SPACE WAVELENGTH IS*'41PF123e6s' ETERS?) MAIN
FORMAT('1',¢ THE ELEMENTS OF 2 ARE') MAIN
FORMAT(T3 4010 ,TL60 2 (I} gT42 0 T19,T55,%2(1)0,T82,'1',T9S,¢Z(1)*) MAIN
FORMAT('1%',* THE CURRENT DISTRIBUTION IS?*",T74,'THE EXCITATION CHECMAIN
1K ISY) MAIN
FORMAT(Y  [0,T10,'C(I)* T27,"MAGNITUDE',T53,'PHASE* ,T232,'VCK(I)*) MAIN
FIRMAT('0',* THE INPUT IMPEDANCE IS *,1P2E14e5,' QHMS') MATN
FORMAT('0®,* THF INPUT ADMITTANCE IS',1P2E14¢5,' MHNS!) MAIN
FORMAT(%0Q®,* THE AC RESISTANCE PER SEGMENT IS ',1PEl4.5,' QHMS*') MAIN
FORMAT(TT ' THETA' yT21, ' GTHETAY , T35, YGPHI ) MAIN
FORMAT('1',% THF OIRECTIVE GAIN IS*) MAIN
FORMAT(*1') MAIN
FORMAT(EL347) MAIN
FORMAT(13) MAIN
FORMAT (14, 1P2F12449T40,14,2E12e4,T8BC,14,42F12.4) MAIN
FORMAT(I441P4F14454T7042F1445) MAIN

001}
Q02
003
Co4
005
006
007
008
009
010
011
012
013
0l4
015
0lé6
017
018
019
020
021
022
0232
024
025
026
027
024
02¢
030
031

03z
0213

v oS

034
035

1L
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27
31
32
33
24
25
26
37

50

FORMAT(1P3E14e5)

FORMAT(?Q%,*
FORMAT('0¢*,*
FORMAT (*0*,*
FORMAT('0",!*
FORMAT (0,
FORMAT(YQ®,*
FORMAT(®0*,"

THE
THE
THE
THE
THE
THE
THE

INPUT POWER IS'yT2491PE14e5¢* WATTS*)

DISSIPATED POWER IS?,T28,1PEl4e54' WATTS?)

RADJATED PUWER [S*¢T28y1PEl4e5y* WATTS?

INPUT RESISTANCE IS*yT35,1PEl%e5¢y* OHMS?')

DISSIPATION RESISTANCE IS'¢T3591PFE14a5,"*
RADIAT ION RESISTANCE IS',T35,1PEl4e5,"

OHMS ')
OHMS )

ANTENNA EFFICIENCY IS ',F6e2¢* PERCENT?)

COMPLEX Z2(251)42R(126,126),C(126),VCK(126),CT,ZIN,YIN

COMPLEX ZINP,YINP

DIMENSION R(34251)+B(34251)y THETD(91) 4GTHETA(91),6GPHI(91)

CIOMMON /COA/ Z /COB/ ZR /COC/ C /COD/ VCK

COMMCN /COONST/ CIPI oXMUEPSLNyBAyBHyHAFLENyPITCHyPANGyNSyNEP,

IWAVE,OMEG)BETA,DZ, TLEN
EQUIVALENCE (ZR(141)4R(191))y(ZR(144)4B(1,y1))

EQUIVALENCE (ZR(1,7)4sGTHETALL)})(2ZR{1,8),GPHI(1))

EQUIVALENCE (ZR(149),THETD(1))
PI = 3,14159265

XMU = THE PERMEABILITY OF FREE SPACE
XMU = 4,0E-7T%xP]

EPSLN = THE PERMITTIVITY OF FREE SPACE
EPSLN = 8.854E~-12

CI = (0. 010’

BA = THE RADIUS OF THE WIRE IN METERS
READ(54+21y END=51) BA

WRITE(641)

WRITE(642) 3A

BH = THE MEAN HELIX RADIUS IN METERS
READ(S5,21) BH

WRITE(643) BH

HAFLEN = THE HELIX HALF LENGTH IN METERS
READ(5,21) HAFLEN

WRITE(6494) HAFLEN

PITCH = THE PITCH OF THE HELIX
READ(5421) PITCH

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MA LN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070

L
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WRITE(6,5) PITCH

PANG HELIX PITCH ANGLE IN RADIANS

PANG ATAN2(PITCH, (PI%*2,%BH))

PANGL = HELIX PITCH ANGLE IN DEGREES

PANGL = 180,%PANG/PI

WRITE(546) PANGL :

NS = NUMBER OF SEGMENTS WITH NON-ZERO CURREN
READ(5422) NS

WRITE(647) NS

WAVE = THE FREE SPACE WAVELENGTH IN METERS
READ(5421) WAVE

WRITE(6,8) WAVE

DZ = Z-DISTANCE BETWEEN ADJACENT SEGMENTS IN METERS
DZ = 24*HAFLEN/(NS+1)

TLEN = THE LENGTH OF EACH SEGMENT IN METERS

TLEN = DZ*SQRT((24*BH¥PI/PITCH)*%2+1)

NEP = THE ORDER OF THE REDUCED IMPEDANCE MATRIX ZR
NEP = (NS+1)/2

NMEG = THE ANGULAR FREQUENCY IN RADIAN PER SECOND

OMEG = 2e99793E8/WAVE*2.%PI

BETA = THE PHASE CONSTANT OF FREE SPACE IN RADIANS PER METER
BETA = 2+*%PI/WAVE

RSQ = AC RESISTANCE PER SQUARE FOR COPPER
RSQ = 2¢61E-T7T%SQRT(2,E+8/WAVE)

SQUARS = NUMBER OF SQUARES PEFR SEGMENT
SQUARS = TLEN/(2.*P1%RA)

RSEG = AC RESISTANCE PER SEGMENT

RSEG = RSQ*SQUARS

WRITE(6415) KSEG

CALL CAZ1

MIDIFY Z TO ACCOUNT FOR THE FINITE CNONDUCTIVITY OF COPPER
Z(1)=2Z(LV4RSEG

WRITE(6,49)

WRITE(6410)

ILIN=NS+245

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATN
MAIN
MATIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

071
072
073
074
075
076
or7
078
079
080
081
082
083
0Rr4
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
1C2
103
104
105
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WRITE(6923) (142Z(1)y1=1,ILIN)

CAaLL CAZR(NS)

INTTIALIZE C TO THE EXCITATION VOLTAGE
NEPM]I=NEP~-1

DC 201 I=1,NEPM1

C(I’-‘-(O.,Oo’

C(NEP)=(1la404)

CALL SGEA(NEP)

WRITE(K,11)

WRITE(A,12)

CALL CAZR(NS)

CALL VCHK(NEP!

PSUM=Q,

DO 102 I=1,NEP
CMAG2=REAL(C(I))**24AIMAGIC(T) ) %%
CMAG=SORT (CMAG2)

PSUM=PSUM+CMAG?2
CPHA=ATANZ2(AIMAGI(C(I)),REAL(C(I)))I*1804/P]1
WRITE(6924) 1,C(1)yCMAGyCPHA,VCKI(])
YINP=C(NEP)

LINP=1./YINP

WRITE(64913) ZINP

WRITE(6414) YINP
PIN=REAL(C(NEP)) /2,

PDISS = RSEG*(PSUM-CMAG2/2,)
PRAD=PIN-PDISS

RIN=REAL(ZINP)

RDISS=PDISS*RIN/PIN
RRAD=PRAD*RIN/PIN
EFFIC=PRAD/PIN%100.

WRITE(H431) PIN

WRITE(S5,22) PDISS

WRITE(6,32) PRAD

WRITE(6,24) RIN

WRITE(6435) RDISS

MAIN
MAIN
MAIN
MAIN
MATIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MA TN
MAIN
MAIN
MAIN
MAIN
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109
110
111
112
113
114
115
116
117
118
119
120
121
122
122
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
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WRITE(6926) RRAD

WRITE(6,27) EFFIC

RO=1.E+4

DTHET=2,

PHI=0,

CALL CORD

CALL GAIND(RO,DTHET,yPHI 4PRAD)
WRITE(6,17)

WRITE(6,416)

IMAX=90/DTHET+1,5

WRITE(6427) (THETD(T)yGTHETA{I) GPHI(I),1=1, IMAX)
WRITE(6,20)

GO TO 50

CONTINUE

SToP

END

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

14]
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

SL
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Ge0
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920
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%20
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120
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xxddl=9Y1
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(TIVaExxIQVA~ZIVkZexlUVaARX®E+T

ElVaIUVEx*e-9IV)%90el 24+ (TIVxIAVE=-21V)xV138=-=21Sd0

(TIVaZxxIAQVY+ZIVAIQVHX*C-C IV ) %* 2/ CxxV139=-T1v=T11Sd
EIWEOQL+ (e VLIIT+ZxxOHY ) % 2IV=¥]1Y
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216
217

21&
210

IFLI=-2) 218,216,217

PSTA=PSIC
0Z(I-1)=CI*(B1*(CPANG2*COS(P2%*DZ*(1~2) }+SPANG2)*PS B
L+(PSTA=2¢*PSIB+PSIC )*ROMEP)

CONTINUE

CONTINUE

RETURN

END

CAZZ
CAz1z
CAZZ
CAZz
CAZZ
CAZz
CALz
CA1Z2
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SUBROUTINE CAZR(NS)

THIS SUBRROUTINE IS USED TO CALCULATE THE ELEMENTS OF ZR

CIMPLEX Z(251),2R(1264126)
COMMON /COA/ Z /C0B/ IR
NEP=(NS+1)/2

NEPM=NEP=-]

NSPz=NS+2

DJ 220 I=1,NEP

DI 220 J=1,NEP
IR(IHyJI=Z(TABS(I=J)+])

DD 221 I=1,NEPM

LR(NEP 1) =24 0%ZR{NEP,I)

DD 222 1=1,NEPM

D3 222 J=1,NEPM

IR(T 9 J)=ZR(IyJ)+Z(NSP2=-]~))
RETUPN

END

CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR
CAZR

001
00z
003
004
005
006
007
008
009
010
011
012
013
014
015
Ole
o017
ole
0l¢
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SUBROUTINE SGEA (N)

THIS SUBROUTINE SOLVES THE COMPLEX LINEAR SYSTEM A%X=B WHERE
N BY N COMPLEX COEFFICIENT MATRIX (DESTROYED)

NUMBER OF EQUATIONS AND UNKNOWNS

N ELEMENT VECTOR (REPLACED BY SOLUTION VECTOR X)

N ELEMENT UNKNOWN VECTOR (SOLUTION)

THE METHOD USED IS GAUSS ELIMINATION WITH PARTIAL PIVOTING.

THE PIVOT ELEMENT IS THAT ELEMENT IN THE PIVOT COLUMN WITH

GREATEST NORM WHERE THE NORM USED IS

NORM(A) = [RE(A)| + [IM(A)|

THE EVALUATION OF THIS NORM IS MUCH FASTER THAN FOR THE EUCLIDEAN

NORM AND GIVES NEARLY AS GOOD RESULTS.

Moo=

COMPLEX A(126,126),B(126) ,RPIV,SAVE
COMMON /COB/ A /COC/ B
NP1=N+1

NM1=N-1

FORWARD SOLUTION

DO 50 J=1,NM1

J1=J+1

PNORM=0.

IMAX=J

SEARCH JTH COLUMN FOR PIVOT
po 11 I=J,N

ANORM=ABS (REAL(A(I,J))) +ABS(AIMAS (A (X,J)))
IF (PNORM-ANORM) 10,11, 11
PNORM=ANORM

IMAX=I

CONTINOE

INTERCHANGE ROWS IF NECESSARY
IP(IMAX~-J) 20,22,20

DO 21 I=J,N

SAVE=A(J, I)

A(J,I)=A(IMAX,I)

SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGERA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGERA
SGEA
SGEA
SGER
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA

001
002
003
oou
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
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21

22

30

60

A(IMAX, I)=SAVE

SAVE=8(J)

B(J)=B( IMAX)

B(IMAX)=SAVE

DIVIDE PIVOT EQUATION BY PIVOT
RPIV=(1.E+00,0,E+00)/A(J,J)
DO 30 I=J,N
AldyI)=A(J,I)*RPIV
B(J)=B(J)*RP1IV

ELIMINATE ELEMENTS RELOW DIAGGNAL IN JTH COLUMN
DO 50 I=J1,N

SAVE=A(1,J)

DO 40 JJ=J,N
AlT9J0)=A(1,JJ)=SAVE*A(JyJdJ)
BUI)=B(I)=-SAVE*B(J)

CONTINUE

BIN)=R(N)/A(N,N)

BACK SUBSTITUTION

DO 60 I=1,NM1

IR=N-1

DO 60 J=1,1

JC=NP1-J
BOIR)=B(IR)=A(IR,JCI%XB(JC)
RETURN

END

SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA
SGEA

036
037
038
039
040
041
042
043
044
045
04¢€
047
048
049
050
051
052
053
054
055
056
057
058
056
060
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SUBRDUTINE VCHK(M)

THIS SURFOUTINE IS USED TO MULTIPLY THE CURRENT DISTRIBUTION C 8Y
THE KEDUCED IMPEDANCE ZR TO FORM THE VOLTAGE CHECK MATRIX VCKe

COMPLEX ZR(1269126),C(126)4VCK(126)
COMMON /C0B/7 IR /COC/ € /CDD/ VCK
LT 100 I=1,N

VEK(1)=(0e0y00)

DO 100 J=1,yN
VCK(I)=VCKUT)I+ZR(1,J)%C(J)

RETURN

END

VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK
VCHK

001
062
003
004
005
006
007
008
006
010
0l1
01z
012

[4]
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SUBROUTINE CORD

THIS SUBROUTINE IS USED TO GENERATE THE FOLLOWING ELEMENTS

R(1,1)
R(2,1)
R{3,1)
B(1,1)
B(2,1)
B(3,1)

WU #u uan

N =< XN<X

COORDINATE OF MIDPOINT OF ITH SEGMENT IN METERS
COORDINATE OF MIDPOINT OF ITH SEGMENT IN METERS
COORDINATE OF MIDPOINT OF ITH SEGMENT [N METERS
COMPONENT OF UNIT VECTOR ALONG ITH SEGMENT
COMPONENT OF UNIT VECTOR ALONG ITH SEGMENT
COMPONENT OF UNIT VECTOR ALONG ITH SEGMENT

COMPLEX ZR(12641261,Cl
DIMENSION R(3,251),B(3,251)
/C0B/ IR

COMMON

COMMON /CONST/ CIoPIoXMU,EPSULN,BA,BHyHAFLEN)PITCHyPANGINSyNEP,

IWAVEOMEGsBETAyDZ, TLEN

EQUIVALENCE (ZR(1,1)yR(1y1))y(ZR(1,4),B(1,1))
P2=2.*PI/PITCH

SP=SIN(PANG)

CP=COS (PANG)

DO 10 [=1,NEP

I=D2*(1-NEP)

P2Z=pP2*1
SP2Z=SIN(P2Z)
CP2Z=C0OS(P2L)
R(1,1)=-BH*SP27Z
R(2,1)= BHXCP27Z

R(3,1)= 12

Blly1)=—-CP%CP22
B(2,1)=-CP%SP27
B(3yI)= SP

NM=NE P-

1

DO 11 I=1,NM

K=NS+1-

I

R(1,4K)==R(1,1)
R{2,K)= R(2,1)

CORD
CORD
CORD
CORD
CARD
CORD
CGRD
CCRD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD
CORD

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
0l9
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
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R(34K)}==R(3,1)
B(1,K)= B(1,1)
B(Z'K)=“B(29[)
B(3,K)= B8(3,1)
RE TURN

END

CORD
CORD
CORD
CORD
CORD
CORD

C36
037
038
039
040
041
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SUBRCUTINE GAIND{(ROyDTHET,yPHIPRAD)

THIS SUBROUTINE IS USED TO CALCULATE THE DIRECTIVE GAIN FOR B8CTH

POLARIZATIONS AT A FIELD POINT wiTH SPHERICAL CODRDINATES
ROy, THETA, PHI WHERE

RO = RADIUS IN METERS
THETA = POLAR ANGLE IN DEGREES
PHI = AZIMUTHAL ANGLE IN DEGREES

THE GAIN IS EVALUATED FOR THETA RANGING FROM 0 TO 9C DEGREES IN

STEPS OF DTHET DEGREES ALONG A PATH WITH CONSTANT RO AMD PHI

XF = X COORDINATE OF FIELD POINT IN METERS
YF = Y COORDINATE OF FIELD POINT IN METERS
LF = Z COORDINATE OF FIELD POINT IN METERS

ETHETA = THETA COMPONENT OF FAR FIELD

EPHI = PHI COMPONENT OF FAR FIELD

GTHETA(J) = GAIN OF THETA POLARIZATION FOR THETA=J*ITHET
GPHI(J) = GAIN OF PHI POLARIZATION FOR THETA=J%ITHET
PRAD = RADIATED POWEP

COMPLEX ZR(12691261,C(126)4C14C1,C2,ETHETA,EPHI

DIMENSION R(3,251)yB(34251)yTHETOD(9L1),GTHETA(I1)yGPHI(91)
COMMON /COB/ ZR /CNC/ C

COMMON /CONST/ C1,PI,XMU,EPSLN,BA,BH,HAFLEN,PITCH,PANG ,NS,NEP,
1 WAVE,OMEG+BETAyDZ,TLEN
EQUIVALENCE (ZR(1,1)4R(141) )¢
EQUIVALENCE (ZR(1,7)yGTHETA(L)
EQUIVALENCE (ZR(199),THETD(1))
PHIR=PHI*P1/180,

SPH=SIN(PHIR)

CPH=COS(PHIR)

ROSPH=RC*SPH

ROCPH=RC*(CPH

ROK=BETA*RO

T1==0OMEG*XMU*TLEN/ (44.%PI%*R0O)
Cl=T1*(CI*COS(ROK)+SIN(ROK))

IR(1,4)4B(1,y1))
)9 (ZR(148),GPHI(L))

GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN

-GAIN

GAIN

001
002
003
004
005
006
007
008
009
010
011
012
0153
014
015
016
017
ol1s8
019
029
021
022
023
024
025
026
027
028
029
030
031
032
032
034
035
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18
19

20

30

KKRO=BETA/RO
PISO=PRAD/ (4o *PI%RO*%2)

THETR=0,

DTHR=DTHET*P1/180,
IMAX=90/DTHET+1.5

DO 30 I=1,IMAX

STH=SIN(THETR)

CTH=COS(THETR)

XF=ROCPHXSTH

YF=ROSPH*STH

ZF=RO*CTH

ETHETA=(04404)

EPHI=(0. 106

D3 20 J=1,NS
BTH=(B(1yJ)*CPH+B(2,J)*SPH) *CTH=B(32,J) *STH
BPH==3(1,J)*SPH+B(2,J)%CPH

ROR=R (19 J)XXF4R(2,JI¥YF+R(3,J)%7F
ANG=RKRO*RDR

IF(J=-NEP) 17,17,18

C2=C(J)

GO TO 19

C2=C(NS+1-J)
C2=C2*(COS(ANG)+CI*SIN(ANG))
ETHETA=ETHETA+BTH*C2
EPHI=EPHI+BPH%C?2

ETHETA=CL*ETHETA

EPHI=C1*EPHI
PTH=(REAL(ETHETA)**Z*AIMAG(ETHETA’**Z)/754.
PPH=(REAL(EPHI)*¥*2+AIMAG(EPHI )*%2)/ 754,
THETD(I)=(I-1)%DTHET
GTHETA(I)=PTH/PISO
GPHI(I)=PPH/PISO

THETR=THETR+DTHK

RETURN

END

GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN
GAIN

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
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