Numerical analysis of normal mode helical dipole antennas

Wayne Dennis Swift
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Swift, Wayne Dennis, "Numerical analysis of normal mode helical dipole antennas " (1971). Retrospective Theses and Dissertations. 4589.
https://lib.dr.iastate.edu/rtd/4589

72-12,600

SWIFT, Wayne Dennis, 1944NUMERICAL ANALYSIS OF NORMAL MODE HELICAL DIPOLE ANTENTAS.
Iowa State University, Ph.D., 1971
Engineering, electrical

University Microfilms, A XEROX Company , Ann Arbor, Michigan

Numerical analysis of normal mode helical dipole antennas

by

Wayne Dennis Swift

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.
For the Major Department

Signature was redacted for privacy.
For 'the Graduate College

Iowa State University
Ames, Iowa
1971

PLEASE NOTE:

Some pages have indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. NUMERICAL METHOD 9
III. APPLICATION OF THE NUMERICAL METHOD TO THE NMHD 23
IV. NUMERICAL RESULTS 32
V. DISCUSSION 63
VI. REFERENCES 67
VII. ACKNOWLEDGMENTS 69
VIII. APPENDIX: COMPUTER PROGRAM LISTING 70

I. INTRODUCTION

The characteristics of wave propagation along helical structures have been utilized in several applications, including antennas and traveling wave tubes. In these applications an understanding of device characteristics can be obtained by solving Maxwell's equations subject to the appropriate boundary conditions. The device to be considered here is the normal mode helical dipole antenna (NiHD).

The helical antenna has many possible modes of radiation as discussed by Kraus [1]. The axial mode occurs when the circumference of the helix is on the order of one wavelength and is characterized by radiation along the axis of the helix. In this mode the helix is a broadband antenna, with axial radiation possible over a range of nearly one octave in frequency. An array of axial mode helices was built by Kraus [2] in 1952 for radio astronomy at Ohio State University.

Another possible mode of radiation from a helix is called the normal mode, so named because the maximum radiation is in a plane normal to the axis of the helix. The normal mode occurs when the diameter of the helix is small compared to one wavelength. A NMHD is a heiix radiating in the normal mode which is driven at its midpoint.

The NMHD has several characteristics of interest from an engineering viewpoint. Since the helix is a slow wave structure as noted by Collin and Zucker [3], the resonant length of a NMHD is shorter than that for a linear dipole for a given resonant frequency. Thus the NMHD has potential application in size reduction of antennas. Stephenson [4] has
characterized this size reduction by shortening factor s. For a NMHD with halflength h in its first resonance, $s=4 h / \lambda_{0}$ where λ_{0} is the free space wavelength at the resonant frequency.

The polarization of the radiation from a NMHD is, in general, elliptical, with a large axial ratio when the helix diameter is very small compared to a wavelength. Wheeler [5] has established a design criterion for which the radiation from a NMHD will be circularly polarized.

The possibility of using a $N \mathbb{N H D}$ as a superdirective antenna was noted by Stephenson and Mayes [6], who calculated that in its second resonance the NMHD with $s \approx 0.3$ displayed greater directivity than the half-wave linear dipole antenna and that no sidelobes were present. These calculations were based upon an assumed sinusoidal current distribution. Lain, Ziolkowski, and Mayes [7] calculated and measured characteristics of the NMHD in its second and higher order resonances. Their calculations were also based upon an assumed sinusoidal current distribution.

The problem of determining the current distribution along a helix has been approached in several ways. The helix has been approximated by an infinitely long sheath helix, for which Maxwell's equations can be solved, as by Li [8]. Sensiper [9] has an excellent review of wave propagation on helices and includes a solution of the infinite tape helix problem, assuming a real axial propagation constant. Klock [10] also solves the infinite tape helix problem, but for a complex axiai propagation constant. Lain, Ziolkowski, and Mayes [7] found that the tape helix solution yielded a better approximation to the resonant frequency of a NMHD than did Li's sheath helix solution. It should be
noted that these solutions are for structures of infinite length and are not for a wire helix of finite length.

Marsh [11] measured the current distribution along a helical antenna and interpreted the distribution in terms of three different traveling wave modes along the helix. His T_{0} mode is that mode which exists on a small diameter helix and displays a large VSWR. Lain, Ziolkowski, and Mayes [77 measured current distribution along several helices and observed an approximately sinusoidal standing wave pattern along the antennas.

At the present time no one has been able to solve analytically the finite length helix with circular conductor as a boundary value problem. As a result, all calculations predicting the behavior of the NMHD are based upon some assumed current distribution, usually sinusoidal. It is the purpose of this work to determine the current distribution for the NMHD by numerically solving the boundary value problem. Other characteristics of interest can easily be calculated from the current distribution.

The antenna considered here is a NMHD where the helix is right-handed, and the conductor is assumed to be copper wire. The NMHD is assumed to be excited at its midpoint by a slice voltage generator as discussed by King [12]. This NMHD is examined in its first two resonant modes and the current distribution, input impedance, bandwidth, efficiency, and directive gain are calculated.

The numerical technique used is the matrix method developed by Harrington [13, 14]. In this method Maxwell's equations are applied to a thin conducting wire. A thin wire is one for which the length is much greater than the radius and the radius is much less than one wavelength.

The wire is then approximated by many segments. Then integrals are approximated by summations and derivatives by finite differences. A linear system of equations is then formed which can be solved to give the current distribution on the antenna for the assumed excitation. Once the current distribution is determined, the field pattern for the antenna can easily be calculated.

Harrington and Mautz [15] used this method to calculate the current distribution for several linear antennas. Strait and Hirasawa [16] applied this method to arrays of linear antennas. The matrix method was applied to arbitrary configurations of bent wires by Chao and Strait [17]. While in principle Chao and Strait's program could be used to solve the NMHD problem, practical considerations dictated that a new program be written.

When many segments are necessary to approximate the antenna, most of the computer time used in the matrix method is consumed in the solution of the linear system to determine current distribution. Since the time required to solve a linear system by elimination is proportional to the cube of the order of the system for large systems, the system should be kept as small as possible if use of excessive computer time is to be avoided. When an antenna is symmetric about its midpoint, the order of the system can be reduced by a factor of almost one-half. Accounting for antenna symmetry thus allows the linear system to be solved about eight times faster than can be done without accounting for symmetry. Also note that the storage necessary for the linear system with symmetry considered is about one-fourth that required if symmetry is ignored. Since
the program of Chao and Strait [17] was written for a general antenna, it does not account for symmetry.

In solving a system of linear equations there are three factors which must be considered, especially if the system to be solved is large. These factors are speed, storage required, and accuracy. For a large system the time required to solve the system is approximately equal to $N^{3} T / 3$ for Gauss elimination and equal to $N^{3} T$ for inversion, where N is the order of the system and T is the machine time required for one multiplication (one complex multiplication if the system is complex). To these multiplication times must be added the time required for the pivot search, if any. Pivot searching is done to minimize round-off error as discussed by Fox [18] and Wilkinson [19].

In Chao and Strait's [17] program the linear system for current distribution is solved by inversion. Unless the current distribution for many different excitations of the same antenna at the same frequency must be calculated, solution of the system by Gauss elimination as suggested by Fox [18] is about three times faster than by inversion, not counting the time spent in the pivot search.

Pivot selection is usually done by either of two methods. The first method, partial pivoting, involves searching the pivot column for an appropriate pivot element. In the second method, complete pivoting, all elements below and to the right of the last pivot element are examined in the search for the next pivot element. In most pivot selection schemes the element with largest modulus is chosen as pivot. With real numbers the modulus is just the absolute value of an element, which can be
evaluated very quickly. With complex numbers, however, the evaluation of the modulus of an element is much slower. For example the IBM 360/65 computer can evaluate an absolute value in less than one microsecond, while determining the modulus of a complex number requires over one hundred microseconds, using the CABS function in FORTRAN as noted in [20].

To illustrate the possible significance of pivot search time, consider subroutine LINEQ given by Chao and Strait [17]. This routine looks much like IBM's MINV matrix inversion routine, modified for complex numbers. When LINEQ is used on the $360 / 65$, the evaluation of CABS in the pivot search consumes as much time as the rest of the inversion process. A similar situation exists in the case of CGELG, a Gauss elimination routine available at the Iowa State University Computation Center. This complex pivoting routine also spends about as much time evaluating CABS in the pivot search as is needed to solve the system.

Another possible pivot selection scheme involves choosing the element with greatest norm as pivot, where the norm used is the sum of the absolute value of the real plus the absolute value of the imaginary parts of the element. While this scheme usually results in use of a different pivot element than would be used when the modulus is evaluated, it should be noted that the modulus of the pivot element chosen by this norm scheme is never smaller than $\sqrt{2} / 2$ times the modulus of the pivot element when selected for largest modulus. Extensive numerical examples were run which showed that use of this norm pivot selection scheme yielded accuracy comparable to that obtained using the time consuming modulus evaluation. Numerical examples showed that Chao and Strait's [17] complex matrix
inversion routine LINEQ could be executed twice as fast using the norm pivot selection scheme as compared to the modulus scheme.

After trying several methods to solve the linear system for the current distribution, it was concluded that Gauss elimination with partial pivoting using the norm pivot selection scheme suggested here should be used in the numerical solution of the NMHD because of the speed with which this method could solve the system. Numerical experiments indicated that for the systems solved here the accuracy of this method was similar to that obtained using a Gauss elimination routine with complete pivoting where the pivot was determined on the basis of modulus. The partial pivoting Gauss elimination routine used is subroutine SGEA listed in the Appendix. Note that this routine solves the linear system for current distribution about six times faster than LINEQ and about two and one-half times faster than CGELG. Note also that since the program developed here accounts for symmetry, the current distribution can be calculated about forty-eight times faster than would be possible using the program of Chao and Strait [17]. Since the numerical work done here required several hundred dollars worth of computer time, it is clear that the factor of forty-eight is quite significant.

Since the NMHD in its second resonance is not a very efficient antenna, as noted by Stephenson and Mayes [6], the determination of radiation efficiency for the NMHD is an important part of this work. The program of Chao and Strait [17] does not calculate radiation efficiency. Weeks [21] defines radiation efficiency to be the ratio of the radiated power to the input power. The input power and the radiated power differ
by the power dissipated by the antenna. The dissipated power is due to the ohmic loss of the copper wire. In order to account for the finite conductivity of copper, the a.c. resistance of each segment is calculated in the program developed here. Then the linear system to be solved for current distribution is modified to account for this a.c. resistance. After the current distribution has been found, the ohmic loss for each segment is calculated. The dissipated power is just the sum of these ohmic losses. The radiation efficiency is then easily obtained.

Due to computational considerations, bandwidth is calculated from an equivalent circuit model for the antenna. The input impedance for the antenna is calculated for two frequencies near resonance, and then a series R, L, C circuit model is determined for the antenna as suggested by Jordan and Balmain [22]. The bandwidth of the antenna is then defined to be the bandwidth of this series model. Bandwidths calculated in this way gave close agreement with those found by calculating the input impedance of the antenna at many frequencies. Calculated bandwidths of a few tenths of one percent are found to give close agreement with those measured by Stephenson and Mayes [6] and Lain, Ziolkowski, and Mayes [7] for the NMHD in its second resonance.

The computer program listed in the Appendix is suitable for numerical investigation of the characteristics of the NMHD. Current distribution, input impedance, radiation resistance, efficiency, and directive gain can be determined with this program. The numerical results given are found to agree reasonably well with the experimental work of Stephenson and Mayes [6] and also that of Lain, Ziolkowski, and Mayes [7].

II. NUMERICAL METHOD

The electric field $\overline{\mathrm{E}}^{\mathbf{s}}$ scattered from a conductor placed in an impressed field $\overline{\mathrm{E}}^{\mathrm{i}}$ is given by Harrington [23] as

$$
\begin{equation*}
\bar{E}^{\mathbf{s}}=-j \omega \overline{\mathrm{~A}}-\bar{\nabla} \Phi \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{A}=\mu \oint \tag{2}\\
& s \frac{\bar{J}_{e}-j k R}{4 \pi R} d s \\
& \Phi=\frac{1}{\epsilon} \oiint \frac{\sigma e^{-j k R}}{4 \pi R} d s \tag{3}\\
& s \\
& \sigma=-\frac{1}{j \omega} \bar{\nabla} \cdot \bar{J} \tag{4}
\end{align*}
$$

with angular frequency ω, vector magnetic potential \bar{A}, scalar electric potential Φ, permeability μ, surface current density \bar{J}, propagation constant k, permittivity ε, surface charge density σ, and the distance from a source point on the surface s of the conductor to the field point is denoted by R. The boundary condition that tangential electric field be zero at the conductor surface is accounted for by

$$
\begin{equation*}
\hat{\mathrm{n}} \times \overline{\mathrm{E}}=-\hat{\mathrm{n}} \times \overline{\mathrm{E}}^{\mathbf{i}} \tag{5}
\end{equation*}
$$

at the conductor surface where \hat{n} is the unit vector normal to the surface of the conductor.

If the conductor is a thin wire with length much greater than radius, and radius much less than a wavelength at the frequency of interest, we assume
i) current flows along the axis of the wire
ii) current and charge densities are filaments of current I and charge σ. on the wire axis
iii) $\hat{n} \times \bar{E}^{s}=-\hat{n} \times \bar{E}^{i}$ is applied only to the axial component of \bar{E} at the surface of the conductor.

Under these assumptions we can write

$$
\begin{equation*}
-E_{\ell}^{i}=-j \omega A_{\ell}-\frac{\partial \Phi}{\partial \ell} \tag{6}
\end{equation*}
$$

at the surface of the wire, and

$$
\begin{align*}
& \bar{A}=\mu \int_{\Gamma} \frac{\bar{I}(\ell) e^{-j k R}}{4 \pi R} d \ell \tag{7}\\
& \Phi=\frac{I}{\varepsilon} \int_{\Gamma} \frac{\sigma(\ell) e^{-j k R}}{4 \pi R} d \ell \tag{8}\\
& \sigma=-\frac{1}{j \omega} \frac{d I}{d \ell} \tag{9}
\end{align*}
$$

where ℓ is the length variable along the wire axis and Γ denotes the path traced out by the wire axis.

The axis of the wire is divided into N segments with the $n^{\text {th }}$ segment denoted by starting point n^{-}, midpoint n , and termination point n^{+}, as shown in Figure 1. The boundary condition that the current is zero at the ends of the wire is accounted for by the extra half segment at each end of the wire, as shown in Figure 1. The integrals of (7) and (8) are approximated by summations and the derivatives of (6) and (9) are approximated by finite differences as discussed by Henrici [24] and

Figure 1. Wire axis divided into N segments

Varga [25]. With these approximations (6), (7), (8), and (9) can be written in the form

$$
\begin{equation*}
-E_{\ell}^{i}(m) \approx-j \omega A_{l}(m)-\frac{\Phi\left(m^{+}\right)-\Phi\left(m^{-}\right)}{\Delta l_{m}} \tag{10}
\end{equation*}
$$

at the surface of the wire, and

$$
\begin{align*}
& \bar{A}(m) \approx \mu \sum_{n=1}^{N} \bar{I}(n) \int_{\Delta l_{n}} \frac{e^{-j k R}}{4 \pi R} d \ell \tag{11}\\
& \Phi\left(m^{+}\right) \approx \frac{1}{\varepsilon} \sum_{n_{n}}^{N} \sigma\left(n^{+}\right) \int_{\Delta l_{n^{+}}} \frac{e^{-j k R}}{4 \pi R} d \ell \tag{12}\\
& \Phi\left(m^{-}\right) \approx \frac{1}{\varepsilon} \sum_{n=1}^{N} \sigma\left(n^{-}\right) \int_{\Delta l^{-}}^{n^{-}} \frac{e^{-j k R}}{4 \pi R} d \ell \tag{13}\\
& \sigma\left(n^{+}\right) \approx-\frac{1}{j \omega}\left[\frac{I(n+1)-I(n)}{\Delta l} n_{n^{+}}\right] \tag{14}\\
& \sigma\left(n^{-}\right) \approx-\frac{1}{j \omega}\left[\frac{I(n)-I(n-1)}{\Delta l}\right] \tag{15}
\end{align*}
$$

where $\Delta l_{n^{\prime}}, \Delta l_{n^{+}}$, and $\Delta l_{n^{-}}$are the lengths of the segments from n^{-}to n^{+}, from n to $n+1$, and from $n-1$ to n, respectively. Since the σ 's are given in terms of a linear combination of the I's by (14) and (15), clearly the Φ 's of (12) and (13) can also be expressed as a linear combination of the $I ' s$, as can \bar{A} in (11). Thus $-\bar{E}^{i}(m)$ can be expressed
as a linear combination of the I's.
Let

$$
[I\rceil=\left[\begin{array}{c}
I(1) \tag{16}\\
I(2) \\
\cdot \\
\cdot \\
I(N)
\end{array}\right] \text {, and }[V]=\left[\begin{array}{cc}
\bar{E}^{i}(1) & \cdot \overline{\Delta l}_{1} \\
\bar{E}^{i}(2) & \cdot \overline{\Delta l}_{2} \\
\cdot & \\
\cdot & \\
\bar{E}^{i}(N) & \cdot \\
\hline \Delta q_{N}
\end{array}\right]
$$

Since $E_{l}^{i}(m) \Delta q_{m}=\bar{E}(m) \cdot \overline{\Delta l}_{m}$ is a linear combination of the I 's, we can write

$$
\begin{equation*}
[\mathrm{V}\rceil=[\mathrm{z}\rceil[\mathrm{I}] \tag{17}
\end{equation*}
$$

where the elements of [Z] can be obtained by rearranging (10) through (15) into the form of (17). Note that an arbitrary element of [z$]$ is given by

$$
\begin{gather*}
Z_{\mathrm{mn}}=\overline{\mathrm{E}}^{\mathrm{i}}(\mathrm{~m}) \cdot \overline{\Delta z}_{\mathrm{m}} / I(\mathrm{n}) \tag{18}\\
\left\lvert\, \begin{array}{c}
\text { due to } \\
I(\mathrm{n}) "
\end{array}\right.
\end{gather*}
$$

where

$$
\begin{aligned}
& \bar{E}^{i}(m) \quad=-\bar{E}^{s}(m) \\
& \left\lvert\, \begin{array}{l|l}
\text { due to } \\
I(n) " & \text { on } s .
\end{array}\right.
\end{aligned}
$$

In a typical antenna problem the elements of [V] and the geometry of the wire axis are known, while the current distribution [I] is unknown. If the elements of $[z]$ can be calculated from the geometry, then the
current distribution can be obtained by solving the linear system of (17). In the computer programs of Strait and Hirasawa [16] and of Chao and Strait [17], the inverse of [$Z]$ is calculated and then the current distribution is found using

$$
\begin{equation*}
[I]=[z]^{-1}[\mathrm{~V}] \tag{20}
\end{equation*}
$$

Unless the current distribution for many different excitations [V] of the same antenna at the same frequency must be determined, solution of the linear system of (17) by Gauss elimination or one of the equivalent methods, is faster than forming the inverse of [2]. For large systems (17) can be solved approximately three times faster by Gauss elimination than by the corresponding inversion method as noted by Fox [18].

The integrals in (11), (12), and (13) are of the same form and will be denoted by

$$
\begin{equation*}
\psi(m, n)=\frac{1}{4 \pi \Delta l_{n}} \int_{\Delta \ell_{n}} \frac{e^{-j k R_{m n}\left(\zeta^{\prime}\right)}}{R_{m n}\left(\zeta^{\prime}\right)} d \zeta^{\prime} \tag{21}
\end{equation*}
$$

where $R_{m n}\left(\zeta^{\prime}\right)$ is the distance between the point m and a source point on the $n^{\text {th }}$ segment as shown in Figure 2. Similarly,

$$
\begin{equation*}
\psi\left(m^{+}, n^{+}\right)=\frac{1}{4 \pi \Delta l} \int_{n^{+}} \int_{\Delta l}{ }_{n^{+}} \frac{e^{-j k R_{m^{+}}+\left(\zeta^{\prime}\right)}}{R_{m^{+} n^{+}}\left(\zeta^{\prime}\right)} d \zeta^{\prime} \tag{22}
\end{equation*}
$$

where $R_{m}{ }_{n}+\left(\zeta^{\prime}\right)$ is the distance between the point m and a source point on $\Delta l_{n}+$. Expressions for $\psi\left(m^{-}, n^{-}\right), \psi\left(m^{-}, n^{+}\right)$, and $\psi\left(m^{+}, n^{-}\right)$follow directly. The evaluation of these ψ integrals will be considered later.

Figure 2. Local cylindrical coordinate system

Let the $n{ }^{\text {th }}$ segment be represented by a current filament $I(n)$ and two filaments of net charge

$$
\begin{equation*}
q\left(n^{+}\right)=\frac{1}{j \omega} I(n), \quad q\left(n^{-}\right)=-\frac{1}{j \omega} I(n) \tag{23}
\end{equation*}
$$

where $\mathrm{q}=\sigma \Delta \ell$. The vector potential at m due to $\mathrm{I}(\mathrm{n})$ is, by (11),

$$
\begin{align*}
& \overline{\mathrm{A}}(\mathrm{~m}) \quad=\mu I(\mathrm{n}) \overline{\Delta l}_{\mathrm{n}} \psi(\mathrm{~m}, \mathrm{n}) \tag{24}\\
& \left\lvert\, \begin{array}{l}
\text { due to } \\
I(\mathrm{n})
\end{array}\right.
\end{align*}
$$

The scalar potentials at m^{+}and m^{-}due to the charges of (23) are, by (12) and (13),

$$
\begin{align*}
& \Phi\left(m^{+}\right)=\frac{q\left(n^{+}\right)}{\epsilon} \psi\left(m^{+}, n^{+}\right) \tag{25}\\
& \begin{array}{l}
\text { due to } \\
q\left(n^{+}\right)
\end{array} \\
& \Phi\left(m^{+}\right) \quad=\frac{q\left(n^{-}\right)}{\epsilon} \psi\left(m^{+}, n^{-}\right) \\
& \begin{array}{l}
\text { due to } \\
q\left(n^{-}\right)
\end{array} \tag{26}
\end{align*}
$$

$\Phi\left(\mathrm{m}^{-}\right)=\frac{\mathrm{q}\left(\mathrm{n}^{+}\right)}{\epsilon} \psi\left(\mathrm{m}^{-}, \mathrm{n}^{+}\right)$ due to $q\left(n^{+}\right)$

$$
\begin{aligned}
& \Phi\left(m^{-}\right) \quad=\frac{q\left(n^{-}\right)}{\epsilon} \psi\left(m^{-}, n^{-}\right) \\
& \left\lvert\, \begin{array}{l}
\text { due to } \\
q\left(n^{-}\right)
\end{array}\right.
\end{aligned}
$$

The substitution of (23) into (25) through (28) gives

$$
\begin{equation*}
\left.\Phi\right|^{\Phi\left(m^{+}\right)}=\frac{1}{j \omega_{\varepsilon}} I(n)\left[\psi\left(m^{+}, n^{+}\right)-\psi\left(m^{+}, n^{-}\right)\right] \tag{29}
\end{equation*}
$$

Now the substitution of (24), (29), and (30) into (10) gives

$$
\begin{align*}
& E_{l}^{i}(m) \quad= \\
& \qquad \begin{array}{l}
\text { "due to } \\
I(n) " I(n) \frac{\overline{\Delta l}_{m} \cdot \overline{\Delta l}_{n}}{\Delta l} \psi(m, n) \\
\\
\\
\quad+\frac{I(n)}{j \omega_{\in} \Delta l_{m}}\left[\psi\left(m^{+}, n^{+}\right)-\psi\left(m^{+}, n^{-}\right)-\psi\left(m^{-}, n^{+}\right)+\psi\left(m^{-}, n^{-}\right)\right]
\end{array} \tag{31}
\end{align*}
$$

at the conductor surface.
Note that

$$
\begin{align*}
& \bar{E}^{i}(\mathrm{~m}) \quad \cdot \overline{\Delta l}_{\mathrm{m}}=\mathrm{E}_{\ell}^{\mathrm{i}}(\mathrm{~m}) \Delta \ell \tag{32}\\
& \left\lvert\, \begin{array}{l|l}
\text { "due to } \\
I(\mathrm{n}) "
\end{array}\right.
\end{align*}
$$

The substitution of (32) into (31) gives

$$
\begin{aligned}
& \bar{E}_{(m)}^{i} \quad-\overline{\Delta l}_{m}=j \mu_{\mu} I(n) \overline{\Delta l}_{m} \cdot \overline{\Delta l}_{n} \psi(m, n) \\
& \left\lvert\, \begin{array}{l}
\text { "due to } \\
I(n) "
\end{array}\right. \\
& \quad+\frac{I(n)}{j \omega \varepsilon}\left[\psi\left(m^{+}, n^{+}\right)-\psi\left(m^{+}, n^{-}\right)-\psi\left(m^{-}, n^{+}\right)+\psi\left(m^{-}, n^{-}\right)\right]
\end{aligned}
$$

Now the elements of [2] can be found by substituting (33) into (18) which gives

$$
\begin{align*}
Z_{m n}= & j \omega \mu \overline{\Delta l}_{m} \cdot \overline{\Delta l}_{n} \psi(m, n) \\
& +\frac{1}{j \omega \varepsilon}\left[\psi\left(m^{+}, n^{+}\right)-\psi\left(m^{+}, n^{-}\right)-\psi\left(n^{-}, n^{+}\right)+\psi\left(m^{-}, n^{-}\right)\right] \tag{34}
\end{align*}
$$

Since $\overline{\Delta l}_{\mathrm{m}} \cdot \overline{\Delta l}_{\mathrm{n}}$ is easily obtained from the geometry, all that remains to be done is the evaluation of the ψ integrals and then each element of [z] can be calculated.

Recall that

$$
\begin{equation*}
\psi(m, n)=\frac{1}{4 \pi \Delta l_{n}} \int_{\Delta l_{\mathrm{n}}} \frac{e^{-j k R_{\mathrm{mn}}\left(\zeta^{\prime}\right)}}{R_{\mathrm{mn}}\left(\zeta^{\prime}\right)} d \zeta^{\prime} \tag{21}
\end{equation*}
$$

where ζ^{\prime} is some integration point along the ζ-axis of a cylindrical coordinate frame in which the 5 -axis is tangent to element Δl_{n} at its midpoint n as shown in Figure 2.

Harrington [13] suggests that $R_{m n}\left(5^{\prime}\right)$ be approximated by

$$
R_{m n}(\zeta) \approx \begin{cases}\sqrt{\rho^{2}+\left(\zeta-\zeta^{\prime}\right)^{2}} & , m \neq n \tag{35}\\ \sqrt{a^{2}+\left(\zeta^{\prime}\right)^{2}} & , m=n\end{cases}
$$

where a is the radius of the wire. Let $\alpha=\Delta \ell_{n} / 2$. Then (21) can be written in the form

$$
\begin{equation*}
\psi(m, n)=\frac{1}{8 \pi \alpha} \int_{-\alpha}^{\alpha} \frac{e^{-j k R_{m n}\left(\zeta^{\prime}\right)}}{R_{m n}\left(\zeta^{\prime}\right)} d \zeta^{\prime} \tag{36}
\end{equation*}
$$

Harrington [13] gives formulas for evaluating (36) based on fiveterm Maclaurin expansions for the Green's function. One formula is developed which converges well for small R, that is for $R<100$, and another is given which converges well for $R \geq 10 \alpha$. These formulas were used in the programs of Strait and Hirasawa [16] and Chao and Strait [17] and are also used here in subroutine CAZZ listed in the Appendix.

Losses due to the finite conductivity of the wire can easily be accounted for. At high frequencies the resistance of each segment is due to the skin effect, as discussed by Hayt [26] and by Adler, Chu, and Fano [27]. The resistance per segment can be calculated using the formulas given in the popular ITT handbook [28]. This resistance must be added to the self-impedance of each element, that is, to the diagonal elements of [z], before the linear system of (17) is solved.

In order to calculate the radiated (scattered) field, an appropriate numerical formula must be formed. Recall that the scattered field is given by

$$
\begin{equation*}
\bar{E}^{s}=-j \omega \bar{A}-\bar{\nabla} \Phi \tag{1}
\end{equation*}
$$

For a field point remote from the antenna (a point in the far-field) the scalar potential need not be considered since it does not contribute to the far-field of the antenna. It is convenient to work in the spherical coordinate system of Figure 3. Since only the θ and ϕ components of $\overline{\mathrm{E}}$ s contribute to the radiation field, all that must be evaluated is

$$
\begin{align*}
& E_{\theta}^{s}(\bar{r})=-j \omega A_{\theta}(\bar{r}) \tag{37}\\
& E_{\phi}^{s}(\bar{r})=-j \omega A_{\phi}(\bar{r})
\end{align*}
$$

Figure 3. Spherical coordinate system for evaluation of vector potential $\bar{A}(\bar{r})$
where $|\bar{r}|$ is sufficiently large that the field point is indeed in the far-field.

The vector magnetic potential due to a filament of current is known to be

$$
\begin{equation*}
\bar{A}(\bar{r})=\frac{\mu}{4 \pi} \int_{\Gamma} \frac{I\left(\bar{r}^{\prime}\right){\bar{d} \imath^{\prime}}^{\prime} e^{-j k\left|\bar{r}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|} \tag{39}
\end{equation*}
$$

where \bar{r} denotes the field point, \bar{r} ' denotes a source point on the filament, and Γ is the path traced out by the filament. This integral may be evaluated numerically using

$$
\begin{equation*}
\bar{A}(\bar{r}) \approx \frac{\mu}{4 \pi} \sum_{n=1}^{N} \frac{I_{n} \overline{\Delta l}_{n} e^{-j k\left|\bar{r}-\bar{r}_{n}\right|}}{\left|\bar{r}-\bar{r}_{n}\right|} \tag{40}
\end{equation*}
$$

where $I_{n} \overline{\Delta l}{ }_{n}$ is the current element along the $n{ }^{\text {th }}$ segment located by position vector \bar{r}_{n}. For $|\bar{r}| \gg\left|\bar{r}_{n}\right|$, this integral can be written as

$$
\begin{equation*}
\bar{A}(\bar{r}) \approx \frac{\mu}{4 \pi} \sum_{n=1}^{N} \frac{I_{n} \overline{\Delta l}_{n} e^{-j k\left|\bar{r}-\bar{r}_{n}\right|}}{|\bar{r}|} \tag{41}
\end{equation*}
$$

Note that \bar{r}_{n} cannot be neglected in the phase expression. Now for $|\bar{r}| \gg\left|\bar{r}_{n}\right|$ we have

$$
\begin{equation*}
\left|\bar{r}-\bar{r}_{n}\right| \approx|\bar{r}|-\left|\bar{r}_{n}\right| \cos \xi_{n}=r_{0}-r_{n} \cos \xi_{n} \tag{42}
\end{equation*}
$$

where \bar{S}_{n} is the angle between \bar{r} and \bar{r}_{n} as shown in Figure 3. Finally, the vector field may be calculated using

$$
\begin{equation*}
\bar{A}(\bar{r}) \approx \frac{\mu_{e} e^{-j k r} 0}{4 \pi r_{0}} \sum_{n=1}^{N} I_{n} \overline{\Delta l}_{n} e^{j k r_{n} \cos \xi_{n}} \tag{43}
\end{equation*}
$$

and (43) can be substituted into (37) and (38) to find the far-field.

III. APPLICATION OF THE NUMERICAL METHOD TO THE NMHD

In order to apply the matrix method of Harrington [13] to the NMHD, it is necessary to first examine the geometry of the NMHD . The wire axis of a NMHD is shown in Figure 4. This helix is characterized by mean diameter D, pitch p, and halflength h. The pitch angle γ is given by

$$
\begin{equation*}
\gamma=\tan ^{-1} \frac{P}{\pi D} \tag{44}
\end{equation*}
$$

The axis of the helix is assumed to lie along the z-axis with the feed point (midpoint) at $x=0, y=D / 2, z=0$. The axis of the wire lies along the helix characterized by the parametric equations

$$
\begin{align*}
& x=-\frac{D}{2} \sin \left(\frac{2 \pi z}{p}\right) \tag{45}\\
& y=\frac{D}{2} \cos \left(\frac{2 \pi z}{p}\right) \tag{46}
\end{align*}
$$

where $-\mathrm{h} s \mathrm{z} \leq \mathrm{h}$. The wire radius is denoted by a.
The axis of the wire is divided into N equal length segments (plus two half-segments at the wire ends) where N is odd. The segments are numbered consecutively from one to N, from the segment with most negative z-component to that with most positive z-component, respectively. Note that the feed point is at the $(\mathbb{N}+1) / 2$ th segment. Each segment n has a beginning point n^{-}, a midpoint n, and a termination point n^{+}. Let $z^{-}(n), z(n)$, and $z^{+}(n)$ denote the z-coordinate of n^{-}, n, and n^{+}, respectively. Clearly we can write

Figure 4. Geometry of a normal mode helical dipole

$$
\begin{align*}
& z(n)=\Delta z\left(n-\frac{N+1}{2}\right) \tag{47}\\
& z^{-}(n)=z(n)-\frac{\Delta z}{2} \tag{48}\\
& z^{+}(n)=z(n)+\frac{\Delta z}{2} \tag{49}
\end{align*}
$$

where $\Delta z=2 h /(N+1)$ is the length of the projection of one segment onto the z-axis. The x and y coordinates of points n, n^{-}, and n^{+}can easily be found by the substitution of (47), (48), and (49) into (45) and (46).

Let $\Delta \mathcal{l}$ denote the length of each segment. This length can be evaluated using the line integral

$$
\Delta \ell=\int_{0}^{\Delta z}\left[\left(\frac{d x}{d z}\right)^{2}+\left(\frac{d y}{d z}\right)^{2}+1\right]^{\frac{3}{2}} \mathrm{~d} z
$$

along helix

When (45) and (46) are substituted into (50), the result is

$$
\begin{equation*}
\Delta \ell=\Delta z\left[\left(\frac{D_{\pi}}{\mathrm{P}}\right)^{2}+1\right]^{\frac{1}{2}} \tag{51}
\end{equation*}
$$

In addition to the coordinates describing the helix, unit vectors pointing along the helix are needed at all points n^{-}, n, and n^{+}. Let $\hat{b}\left(n^{-}\right), \hat{b}(n)$, and $\hat{b}\left(n^{+}\right)$denote unit vectors along the wire axis at the points n^{-}, n, and n^{+}, respectively. It is clear that

$$
\begin{equation*}
\hat{b}(n)=-\hat{a}_{x} \cos \gamma \cos \left[\frac{2 \pi z(n)}{p}\right]-\hat{a}_{y} \cos \gamma \sin \left[\frac{2 \pi z(n)}{p}\right]+\hat{a}_{z} \sin \gamma \tag{52}
\end{equation*}
$$

with similar expressions for $\hat{b}\left(n^{-}\right)$and $\hat{b}\left(n^{+}\right)$, where \hat{a}_{x}, \hat{a}_{y}, and \hat{a}_{z} are unit vectors along the x, y, and z axis respectively, of Figure 4. An arbitrary element of [Z$]$ as given by (34) can be written in the form

$$
\begin{align*}
z_{m n}= & j \omega \mu \ell^{2} \hat{b}_{m} \cdot \hat{b}_{n} \psi(m, n) \\
& +\frac{1}{j \omega \varepsilon}\left[\psi\left(m^{+}, n^{+}\right)-\psi\left(m^{+}, n^{-}\right)-\psi\left(m^{-}, n^{+}\right)+\psi\left(m^{-}, n^{-}\right)\right] \tag{53}
\end{align*}
$$

where

$$
\begin{equation*}
\psi(m, n)=\frac{1}{4 \pi l} \int_{l} \frac{e^{-j k R_{m n}\left(\zeta^{\prime}\right)}}{R_{m n}\left(\zeta^{\prime}\right)} d \zeta^{\prime} \tag{54}
\end{equation*}
$$

For the geometry considered here, $\psi(m, n)=\psi\left(m^{-}, n^{-}\right)=\psi\left(m^{+}, n^{+}\right)$, $\psi\left(m^{-}, n^{+}\right)=\psi(m, n+1)$, and $\psi\left(m^{+}, n^{-}\right)=\psi(m, n-1)$. Thus (53) can be written as

$$
\begin{equation*}
z_{m n}=j \omega \mu l^{2} \hat{b}_{m} \cdot \hat{b}_{n} \psi(m, n)+\frac{1}{j \omega_{\varepsilon}}[2 \psi(m, n)-\psi(m, n+1)-\psi(m, n-1)] \tag{55}
\end{equation*}
$$

Note that from the geometry it is obvious that the N^{2} elements of [Z] can be written in terms of N distinct elements Z_{r}, such that

$$
\begin{equation*}
z_{\mathrm{mn}}=\mathrm{Z}_{\mathrm{r}} \tag{56}
\end{equation*}
$$

where $r=|m-n|+1$. Thus we can write

$$
[z]=\left[\begin{array}{lllll}
z_{1} & z_{2} & \cdots & \cdots & z_{N} \tag{57}\\
z_{2} & z_{1} & \cdots & \\
\vdots & & \cdot & & \\
\vdots & & & & \\
z_{N} & & & & z_{1}
\end{array}\right]
$$

In a similar manner we can write

$$
\begin{equation*}
\psi(m, n)=\psi_{I} \tag{58}
\end{equation*}
$$

where the ψ_{r} 's form the sequence $\left\{\psi_{r}: \psi_{1}, \psi_{2}, \ldots, \psi_{N}, \psi_{N+1}\right\}$ and $\psi_{1}=\psi(m, m)$ and $\psi_{N+1}=\psi\left(I^{-}, N^{+}\right)$. Thus (55) can be written as

$$
\begin{align*}
\mathrm{z}_{\mid \mathrm{m}-\mathrm{n}} \mid+1 & =j \omega \mu \ell^{2} \hat{b}_{\mathrm{m}} \cdot \hat{b}_{\mathrm{n}} \psi|m-n|+1 \\
& +\frac{1}{j \omega_{\varepsilon}}\left[\left.\left.2 \psi\right|_{\mathrm{m}-\mathrm{n}}\right|_{+1}-\left.\left.\psi\right|_{\mathrm{m}-\mathrm{n}-1}\right|_{+1}-\psi|m-n+1|_{+1}\right] \tag{59}
\end{align*}
$$

This can be expressed in the form
where $B_{r}=\hat{b}_{1} \cdot \hat{b}_{1+r}$. The Z 's of (60) are calculated in subroutine cAZZ, listed in the Appendix. The ψ 's are evaluated in this routine using the formulas given by Harrington [13].

Now the problem symmetry must be considered. Recall that the linear system to be solved for current distribution is of the form

$$
\begin{equation*}
[z][I]=[v] \tag{61}
\end{equation*}
$$

where [Z$]$ is N by N (N odd) and [V] and [I] are both N-element column vectors. For the NMHD considered here, the excitation is assumed to be a unit amplitude voltage generator located at the midpoint of the
antenna. Under this assumption the elements of [V] are all zero, except for the $(N+1) / 2$ th element, which is unity. Due to the symmetry of [z] and [V], [I] will have the form

$$
[I]=\left[\begin{array}{l}
I_{1} \tag{62}\\
I_{2} \\
\vdots \\
I_{I_{N+1}} \\
\vdots^{\frac{N}{2}} \\
I_{2} \\
I_{1}
\end{array}\right]
$$

Now the linear system can be written out as

$$
\left[\begin{array}{llll}
z_{1} & \mathrm{z}_{2} & \cdots & \mathrm{z}_{\mathrm{N}} \tag{63}\\
\mathrm{z}_{2} & \mathrm{z}_{1} & & \\
& & & \\
\cdot & & \cdot & \\
\cdot & & & \\
\cdot & & & \\
\mathrm{z}_{\mathrm{N}} & & & \\
\hline
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\vdots \\
\mathrm{I}_{\mathrm{N}+1} \\
\vdots \\
\mathrm{I}_{2} \\
\mathrm{I}_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Define permutation matrix [J] such that

$$
[J]=\left[\begin{array}{lll}
0 & & 1 \tag{64}\\
& \cdot & \\
1 & & 0
\end{array}\right]
$$

Clearly the system of (63) can be written in partitioned form as

$$
\left[\begin{array}{lll}
A & \bar{a} & B \tag{65}\\
\bar{a}^{T} & c & \bar{a}^{T} J \\
B^{T} & \overline{J a} & A
\end{array}\right]\left[\begin{array}{l}
\bar{d} \\
e \\
J \bar{d}
\end{array}\right]=\left[\begin{array}{c}
\overline{0} \\
1 \\
\overline{0}
\end{array}\right]
$$

where A, B, and J are $(N+1) / 2$ by ($N+1$)/2 matrices, \bar{a}, \bar{d}, and $\overline{0}$ are $(N+1) / 2$ element column vectors, and c, e, and 1 are scalar quantities. Note that superscript T denotes transpose. Multiplying out (65) gives

$$
\begin{align*}
& A \bar{d}+\overline{a e}+B J \bar{d}=\overline{0} \tag{66}\\
& \bar{a}^{T} \bar{d}+c e+a^{T} J J \bar{d}=1 \tag{67}\\
& B^{T} \bar{d}+J \bar{d} \bar{d}+A J \bar{d}=\overline{0} \tag{68}
\end{align*}
$$

The equivalence of (66) and (68) can be shown by premultiplying both sides of (68) by J to give

$$
\begin{equation*}
J B^{\mathrm{T}} \overline{\mathrm{~d}}+\overline{\mathrm{a}}+J A J \overline{\mathrm{~d}}=\overline{0} \tag{69}
\end{equation*}
$$

Note that $J J=I$, the identity matrix, $J A J=A$, and $J B J=B^{T}$. Clearly then, $\mathrm{BJ}=\mathrm{JB}^{\mathrm{T}}$ and the equivalence of (66) and (68) is shown.

A reduced system of linear equations which can be solved for the current distribution can be formed from (66) and (67), such that

$$
\left[\begin{array}{cc}
A+B J & \bar{a} \tag{70}\\
2 \mathrm{a}^{-T} & c
\end{array}\right]\left[\begin{array}{l}
\bar{d} \\
\mathrm{e}
\end{array}\right]=\left[\begin{array}{l}
\overline{0} \\
1
\end{array}\right]
$$

This reduced system has order $(N+1) / 2$. The elements of the coefficient matrix for the reduced system are just linear combinations of the Z_{r} 's of (60) and are easily found. Subroutine CAZR, listed in the Apperdix,
forms this coefficient matrix. Note that $B J$ is merely a resubscripting process which can be accomplished very quickly.

The effect of finite wire conductivity is accounted for by adding the a.c. resistance per segment to Z_{1}, that is, to the self impedance of each segment.

The linear system of (70) is solved for the NMHD current distribution using subroutine SGEA, listed in the Appendix. This is a Gauss elimination algorithm, as previously noted. In order to check the accuracy of the solution, subroutine VCHK is used. In this subroutine the calculated current distribution is used in (70) and the corresponding excitation is calculated. A comparison of this with the assumed excitation can then be made.

In order to calculate the directive gain of the NMHD, the total radiated power as well as the radiated fields must be calculated. The radiated fields are easily determined using (43), (37), and (38). In principle the total radiated power could be obtained by integrating the radiated power density over a sphere surrounding the antenna. It is simpler, however, to note that the radiated power equals the input power minus the dissipated power. The input power $P_{i n}$ is just

$$
\begin{equation*}
P_{i n}=\frac{3}{2} \operatorname{Re}\left(V I^{*}\right) \tag{71}
\end{equation*}
$$

Where V is the amplitude of the source voltage and I^{*} is the complex conjugate of the antenna current at the midpoint. The power dissipated $P_{\text {diss }}$ can be found by summing the ohmic losses due to the a.c. resistance of each segment. Thus

$$
\begin{equation*}
P_{\text {diss }}=\frac{R_{s}}{2} \sum_{n=1}^{N}|I(n)|^{2} \tag{72}
\end{equation*}
$$

where R_{s} is the a.c. resistance per segment. The radiated power is

$$
\begin{equation*}
P_{\text {rad }}=P_{i n}-P_{\text {diss }} \tag{73}
\end{equation*}
$$

Since the radiation field of the NMHD contains both the θ and the \varnothing components of electric field, and a comparison of each component is of interest, directive gains for each component are defined such that

$$
\begin{align*}
& G_{\theta}(r, \theta, \phi)=\frac{\frac{1}{2 \eta}\left|E_{\theta}(r, \theta, \phi)\right|^{2}}{S_{0}} \tag{74}\\
& G_{\phi}(r, \theta, \phi)=\frac{\frac{1}{2 \eta}\left|E_{\phi}(r, \theta, \phi)\right|^{2}}{S_{0}} \tag{75}
\end{align*}
$$

where $S_{0}=P_{r a d} /\left(4 \pi r^{2}\right)$ and r is the distance from the antenna to the far-field point of interest and η is the intrinsic impedance of free space. Subroutines $C O R D$ and GAIND are used to calculate these directive gains for the NMHD.

IV. NUMERICAL RESULTS

The numerical method was applied to five NMHD's for both the first and second resonances. Each antenna consisted of twenty-five turns of A. W. G. number twelve copper wire. The axial halflength and the pitch of each helix was fixed at twenty-five centimeters and two centimeters, respectively. Only the diameter of the helix was varied in these numerical experiments. The dimensions of the antennas are given in Table 1.

Table 1. Helix dimensions

Antenna designation	Halflength cm.	Pitch cm.	Diameter cm.	Pitch angle γ degrees
HD - 10A	25	2	2.0	17.66
HD - 13A	25	2	2.6	13.76
HD - 16A	25	2	3.2	11.25
HD - 18A	25	2	3.6	10.03
HD - 20A	25	2	4.0	9.04

The antennas of Table 1 were each approximated by two hundred fiftyone segments, plus the extra half-segment at each end. Thus each turn of the helix was represented by about ten segments. The results of the numerical analysis of these antennas in the first and second resonances are summarized in Tables 2 and 3, respectively. The results include the free space resonant wavelength λ_{0}, shortening factor s ($s=4 \mathrm{~h} / \lambda_{0}$ for the first resonance and $s=4 h /\left(3 \lambda_{0}\right)$ for the second resonance), input

Table 2. Summary of numerical results for first resonance

| Antenna
 designation | λ_{0}
 meters | Shortening
 factor s | $R_{\text {in }}$
 ohms | $R_{\text {rad }}$
 ohms | Efficiency
 $\%$ | Bandwidth
 $\%$ | Directivity
 $\theta-c o m p o n e n t ~$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD - 10A | 1.8205 | 0.5493 | 27.73 | 27.26 | 98.3 | 6.62 | 1.542 |
| HD - 13A | 2.2071 | 0.4531 | 19.65 | 19.10 | 97.2 | 4.08 | 1.523 |
| HD - 16A | 2.6508 | 0.3772 | 14.20 | 13.58 | 95.7 | 2.71 | 1.508 |
| HD - 18A | 2.9768 | 0.3359 | 11.60 | 10.94 | 94.3 | 2.10 | 1.499 |
| HD $-20 A$ | 3.3225 | 0.3010 | 9.61 | 8.91 | 92.8 | 1.50 | 1.492 |

Table 3. Summary of numerical results for second resonance

Antenna designation	λ_{0} meters	Shortening factor s	$R_{\text {in }}$ ohms	$R_{\text {rad }}$ ohms	Efficiency $\%$	Bandwidth $\%$	Directivity θ-component
HD - 10A	0.6473	0.5150	9.95	9.22	92.7	1.06	2.853
HD - 13A	0.8131	0.4100	6.70	5.88	87.8	0.68	2.614
HD - 16A	1.0040	0.3320	5.10	4.20	82.4	0.50	2.279
HD $-18 A$	1.1434	0.2915	4.44	3.50	78.8	0.45	2.060
HD -20 A	1.2915	0.2581	3.93	2.94	75.0	0.42	1.889

resistance $R_{i n}$ at resonance, radiation resistance $R_{r a d}$ at resonance, radiation efficiency, percent bandwidth, and directivity or maximum directive gain for the θ component of the far-field.

The results are presented graphically in Figures 5 through 9. The sidelobe level in the second resonance is shown in Figure 10. The measurements by Lain, Ziolkowski, and Mayes [7] of some of these characteristics for the second resonance are included on the appropriate figures for comparison. Stephenson and Mayes' [67 calculated directivity, based on an assumed sinusoidal current distribution, is included on Figure 8 for comparison.

For each resonance of each antenna a numerical solution was found at two wavelengths near resonance. By linear interpolation of the input reactance calculated at these two wavelengths, a good approximation to the resonant wavelength was obtained. The input resistance, radiation resistance, efficiency, and directivity at resonance were also found by linear interpolation. The slope of the input reactance near resonance and the input resistance at resonance were then used to obtain a R, L, C series equivalent circuit for the NMHD near resonance. The bandwidth of the NMHD was then defined to be the bandwidth of this equivalent circuit. Bandwidth was determined in this manner in order to reduce the total amount of computer time used. In preliminary numerical experiments in which the helices were approximated by one hundred fifty-one segments, bandwidth determined from the equivalent circuit was found to agree very closely with bandwidth obtained by extensive numerical experiments, where the latter bandwidth was defined to be the range of frequency over which
the input reactance was less than the input resistance at resonance. The numerical results also include the current distribution $I=|I| \angle \phi$ along the antennas, as well as the directive gain patterns in the $x-z$ plane for both components of far-field. These results are shown in Figures 11 through 20 for the NMHD's near their first resonances, and in Figures 21 through 30 for the NMHD's near their second resonances. The phase plots in Figures 21, 25, 27, and 29 indicate an abrupt change in phase angle ϕ from -180° to $+180^{\circ}$. This 360° change has no physical significance and is due to the way ϕ is calculated, such that $-180^{\circ} \leq \phi \leq 180^{\circ}$. It should be noted that the choice of the number of segments to use in approximating the NMHD is a compromise. In general, the use of more segments will result in more accuracy in the solution, but will require more computer time and storage area. A reasonable way to choose the number of segments to use, and that used here, involves a comparison of two solutions to the problem. First the problem should be solved using a small number of segments, perhaps six per turn. Then the same problem should be solved using a greater number of segments. By comparing these two solutions one can ascertain if the solution seems to have converged to the degree required. If not, then the use of more segments is necessary. Of particular usefulness in this comparison are plots of the current distribution. For the NMHD's considered here it was found that the calculated current distribution was somewhat irregular when one hundred fifty-one segments were used, while the distribution was smooth when two hundred fifty-one segments were used.

Figure 5. Shortening factor s as a function of mean helix diameter D

Figure 6. Input resistance $R_{\text {in }}$ and radiation resistance $R_{r a d}$ as functions of shortening factor s

Figure 7. Radiation efficiency as a function of shortening factor s

Figure 8. Directivity for θ-polarization as a function of shortening factor s

Figure 9. Sidelobe level as a function of shortening factor s at second resonance

Figure 10. Bandwidith as a function of shortening factor s

Figure 11. Current distribution for HD-10A near first resonance, 0.5493

Figure 12. Directive gain for $H D-10 \mathrm{~A}$ near first resonance, $s=0.5493$

Figure 13. Current distribution for $\mathrm{HD}-13 \mathrm{~A}$ near first resonance, $\mathrm{s}=0.4531$

Figure 14. Directive gain for $u p-13 \mathrm{~A}$ near first resonance, $s=0.4531$

Figure 15. Current distribution for $\mathrm{HD}-16 \mathrm{~A}$ near first resonance, $s=0.3772$

Figure 16. Directive gain for $\mathrm{HD}-16 \mathrm{~A}$ near first resonance, $\mathrm{s}=0.3772$

Figure 17. Current distribution for $\mathrm{HD}-18 \mathrm{~A}$ near first resonance, 0.3359

Figure 18. Directive gain for $H D-18 \mathrm{~A}$ near first resonance, $s=0.3359$

Figure 19. Current distribution for HD-20A near first resonance, 0.3010

Figure 20. Directive gain for $\mathrm{HD}-20 \mathrm{~A}$ near first resonance, $\mathrm{s}=0.3010$

Figure 21. Current distribution for $H D-10 A$ near second resonance, $s=0.5150$

Figure 22. Directive gain for $\mathrm{HD}-10 \mathrm{~A}$ near second resonance, $\mathrm{s}=0.5150$

Figure 23. Current distribution for $H D-12 A$ near second resonance, $\mathbf{s}=0.4100$

Figure 24. Directive gain for $H D-13 \mathrm{~A}$ near second resonance, $\mathrm{s}=0.4100$

Figure 25. Current distribution for $H D-16 A$ near second resonance, $s=0.3320$

Figure 26. Directive gain for $H D-16 \mathrm{~A}$ near second resonance, $s=0.3320$

Figure 27. Current distribution for $H D-18 A$ near second resonance, $\mathrm{s}=0.2915$

Figure 28. Directive gain for $H D-18 \mathrm{~A}$ near second resonance, $\mathrm{s}=0.2915$

Figure 29. Current distribution for $\mathrm{HD}-20 \mathrm{~A}$ near second resonance, $\mathrm{s}=0.2581$

Figure 30. Directive gain for $H D-20 A$ near second resonance, $s=0.2581$

V. DISCUSSION

While the .umber of numerical examples considered was small, the results do provide insight into the characteristics of the NMHD. Of particular interest are the calculated current distributions for the second resonance, shown in Figures 21, 23, 25, 27, and 29. If the current distribution were truly sinusoitai, then there wouid be a nuii in the current distribution at $z=h / 3$. This value of z is indicated on the figures by a short vertical line. Note that the null actually occurs at a somewhat larger value of z. This null displacement indicates that the phase velocity for the finite helix is a function of position. This result has not, to the author's knowledge, been calculated previously. Note that the current distribution drops off rather abruptly near the end of the helix. This dropping off, or end effect, occurs along the last turn of the helix, and appears to be similar to the end capacitance effect for a linear dipole. The end effect indicates that the phase velocity is smaller near the halix end than near the midpoint. Also note that the peak in the current distribution at about $z=0.17$ is not as big as the peak at $z=0$. This suggests that the propagation constant is complex, a result not surprising in view of the lossy wire conductor considered here.

The radiation efficiency as a function of shortening factor is shown in Figure 7. Although the results shown are for only one size of copper wire, it is expected that the radiation efficiency for a NMHD would decrease as the diameter of the wire decreased. For example, when the wire size for $H D-16 A$ was reduced from number twelve to number eighteen in an additional numerical example, the calculated radiation
efficiency for the second resonance changed from about eighty-two percent to about seventy percent.

As interesting comparison can be made between the second resonance input resistance calculated here and that measured by Lain, Ziolkowski, and Mayes [7]. As shown in Figure 6 the measured input resistance, for a given value of s, is greater than the calculated here. This apparent discrepancy is probably due to the fact that the geometry for the measured antennas was different than that for those considered here. Both the measured and the numerically modeled antennas were resonant in the same frequency range. The measured antennas consisted of A. W. G. number sixteen tinned copper wire for which the a.c. resistance per unit length at the resonant frequency is, depending on the tin thickness, about four times that for the number twelve copper wire considered here. Thus the losses for the measured antennas should be greater than those for the antennas considered here, and the input resistance for the measured antennas should be greater than for those considered here.

A comparison between the second resonance directivity determined here and the directivity that Stephenson and Mayes [6] calculated by assuming a sinusoidal current distribution is shown in Figure 8. The discrepancy for small values of s seems to be due to the fact that in the work of Stephenson and Mayes the diameter of the NMHD was assumed to be very small, so that the cross-polarized field was negligible. For the NMHD's considered here the cross-polarized field is not negligible, particularly for the small values of s. From Figure 30 where $s=0.2581$, note that the directivity for the ϕ-polarization (the cross-polarization)
is about 0.18, while that for the θ-polarization is about 1.89. When these are added the result is 2.07 , which agrees well with Stephenson and Mayes' calculated value. In a similar manner the two curves can be made to agree closely for $s<0.4$. The discrepancy for $s>0.4$ is not well understood, but it is probably due to the fact that the current distribution on a NMHD is not quite sinusoidal.

The directivity for a linear half-wave dipole can be calculated to be 1.64 by assuming a sinusoidal current distribution. In one additional example the diameter of the helix was set to zero, such that the helix degenerated into a linear antenna. The directivity of this antenna was then calculated ion-ie 1.64.

The ratio of the directivity for the θ-polarization to that for the \varnothing-polarization is also of interest. The square root of this directivity ratio is equal to the axial ratio $A R$ of the elliptically polarized field for the antenna. Kraus [1] develops a formula for axial ratio based on approximating a NMHD by a series of linear e lements and loops. The formula is

$$
\begin{equation*}
A R=\frac{2 p \lambda_{o}}{\pi^{2} D^{2}} \tag{76}
\end{equation*}
$$

When the axial ratio is calc. .ated for $\mathrm{HD}-1 \mathrm{CA}$ at its first resonance using (76), the result is 18.5. From Figure 21 the directivity ratio is found to be 339. The square root of this directivity ratio is 18.4 , which compares very closely with that from Kraus' formula. In a similar manner the axial ratio determined from the results here for $H D-20 A$ in its first resonance is 8.41, compared to 8.44 using (76).

The sidelobe level calculated here for the second resonance is compared to that measured by Lain, Ziolkowski, and Mayes [7] in Figure 9. The agreement is pretty close, allowing for the somewhat different antenna geometries. In both the calculations and the measurements the sidelobe structure was found to disappear for s less than about 0.3.

Second resonance bandwidths calculated here and those measured by Lain, Ziolkowski, and Mayes [7] are compared in Figure 10. Again the agreement is probably as close as can be expected, considering the differing geometries.

In conclusion, the matrix method has been used to solve the $N M H D$ problem, and has yielded results comparable to those obtained by other investigators. Of particular significance here are the results which indicate that the phase velocity along the finite helix is a function of position. This conclusion cannot be reached on the basis of the sinusoidal current distribution assumed by others, and would be quite difficult to measure.

The computer program listed in the Appendix can be used for additional numerical investigations of the NMHD. The user is cautioned to consider his problem carefully before applying this program to an arbitrary NMHD. In particular, he should ascertain that the assumptions upon which this method is based are satisfied for his problem.

VI. REFERENCFis

[1] J. D. Kraus, Antennas. New York: McGraw-Hill, 1950.
[2] J. D. Kraus, Radio Astronomy. New York: McGraw-Hill, 1966.
[3] R. E. Collin and F. J. Zucker, Antenna Theory, part 2. New York: McGraw-Hill, 1969, sect. 19.12.
[4] D. T. Stephenson, "Broadband helical dipole arrays," Antenna Laboratory Report No. 65-19, Engineering Experiment Station, University of Illinois, Urbana, October 1965.
[5] H. A. Wheeler, "A helical antenna for circular polarization," Proc. IRE, vol. 35, pp. 1484-1488, December 1947.
[6] D. T. Stephenson and P. E. Mayes, "Norma1-mode helices as moderately superdirective antennas," IEEE Trans. Antennas Propagat., vol. AP-14, pp. 108-110, January 1966.
[7] W. Y. Lain, F. P. Ziolkowski, and P. E. Mayes, 'The characteristics of normal mode helical dipoles near higher order resonances," Antenna Laboratory Report No. 66-7, Engineering Experiment Station, University of Illinois, Urbana, June 1966.
[8] T. Li, "The small-diameter helical antenna and its input characteristics," Ph.D. thesis, Dep. Elec. Eng., Northwestern University, Evanston, 1958.
[9] S. Sensiper, "Electromagnetic wave propagation on helical structures," Proc. IRE, vol. 43, pp. 149-161, February 1955.
[10] P. W. Klock, "A study of wave propagation of helices," Antenna Laboratory Report No. 68, Engineering Experiment Station, University of Illinois, Urbana, March 1963.
[11] J. A. Marsh, "Current distributions on helical antennas," Proc. IRE, vol. 39, pp. 668-675, June 1951.
[12] R. W. P. King, The Theory of Linear Antennas. Cambridge: Harvard University Press, 1956.
[13] R. F. Harrington, "Matrix methods for field problems," Proc. IEEE, vol. 55, pp. 136-149, February 1967.
[14] R. F. Harrington, Field Computation by Moment Methods. New York: Macmillan, 1968.
[15] R. F. Harrington and J. R. Mautz, "Straight wires with arbitrary excitation and loading," IEEE Trans. Antennas Propagat., vol. AP-15, PP. 502-515, July 1967.
[16] B. J. Strait and K. Hirasawa, "Computer programs for analysis and design of linear arrays of loaded wire antennas," Scientific Report No. 5 on Contract No. F19628-68-C-0180, AFCRL-70-0108, Syracuse University, February 1970.
[17] H. H. Chao and B. J. Strait, "Computer programs for radiation and scattering by arbitrary configurations of bent wires," Scientific Report No. 7 on Contract No. F19628-68-C-0180, AFCRL-70-0374, Syracuse University, September 1970.
[18] L. Fox, An Introduction to Numerical Linear Algebra. New York: Oxford University Press, 1965.
[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford: Clarendon Press, 1965.
[20] IBM System/360: FORTRAN IV Library Subprograms, Form C28-6596-2, 1966.
[21] W. L. Weeks, Antenna Engineering. New York: McGraw-Hill, 1968.
[22] E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, second edition. Englewood Cliffs: PrenticeHa11, 1968.
[23] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961.
[24] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. New York: Wiley, 1962.
[25] R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs: Prentice-Hall, 1962.
[26] W. H. Hayt, Engineering Electromagnetics, second edition. New York: McGraw-Hill, 1967.
[27] R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation. New York: Wiley, 1965.
[28] H. P. Westman (editor), Reference Data for Radio Engineers, fourth edition. International Telephone and Telegraph Company, New York, 1956, pp. 128-129.

VII. ACKNOWLEDGMENTS

The author wishes to express his gratitude to Dr. David T. Stephenson, who guided this work, and to Dr. Robert E. Post for their assistance. Thanks are also given to the many others whose helpful comments aided this work. The excellent typing of the manuscript was done by Marcy Houck.

This work is dedicated to my wife Susan and my daughter Jill.

VIII. APPENDIX: CCBPUTER PROGRAM LISTITE

This program calculates the current distribution, input impedance, radiation resistance, efficiency, and directive gain for a NMHD. The NMHD is assumed to be a right-handed helix with a copper wire conductor. The excitation is assumed to be a slice voltage generator of one volt peak amplitude located at the midpoint of the antenna. The program consists of a main program and six subroutines, which are listed after the main program.

As written, the program allows a maximum of two hundred fifty-one segments to be used in the helix approximation. More segments can be used by changing the dimensioning statements. When compiled in H-level FORTRAN, the execution time for this program, using two hundred fifty-one segments to approximate the helix, is about fifty seconds on the IBM 360/65 computer.

While the program was written for copper conductors, other conductors can be used by changing line ninety-four in the main program.

Note that while the program is written to calculate directive gain, power gain can be calculated if desired. In order to calculate power gain, line one hundred forty-seven of the main program should be changed to read

CALL GAIND (RO,DTHET, PHI, PIN)

If power gain is calculated, line thirty of the main program should be changed to note this fact.

MAIN 001
MAIN 002
THIS PROGRAM AND ITS ASSOCIATED SUBROUTINES CALCULATE THE CURRENT MAIN 003 DISTRIGUTION, INPUT IMPEDANCE, RADIATION RESISTANCE, EFFICIENCY, MAIN COK AND DIRECTIVE GAIN FOK A HELICAL DIPOLE ANTENNA WITH MAIN 005 WAVE = FREE SPACE WAVELENGTH IN METERS.

MAIN 006
THE CURRENT DISTRIBUTIBN IS CALCULATEO FOR AN EXCITATION VOLTAGE MAIN 007 of dNe volt peak locateg at the miupiInt of the antenna.

MAIN 008 THE ANTENNA IS ASSUMED TO BE A RIGHT-HANDED HELIX, THAT IS, THE MAIN 009 WIRE CONOUCTOR TRACES JUT THE PATH OF A RIGHT-HANDED SCREW. NOTE THAT THE WIRE IS ASSUMED TO BE COPPER.

FORMAT('1',' THE DIMENSIONS OF THE ANTENNA FOLLOW',/)
FORMAT('O',' THE RADIUS DF THE WIRE IS',1PE16.6." METERS') FORMAT ('0',' THE MEAN HELIX RAOIUS IS ', IPEIG. $\mathrm{O}^{\prime \prime}$ ' METERS') FORMAT('O',' THE HELIX HALFLENGTH IS ', IPEIG.6," METERS') FORMAT('O',' THE PITCH DF THE HELIX IS',lPEL6.6," METERS'I

MAIN 010
MAIN 011
MAIN 012
MAIN 013
MAIN 014
MAIN 015
MAIN 016
MAIN 017 FORMAT('O',' THF HELIX PITCH ANGLE IS ', 1PE16.6.' DEGQEES'I MAIN 018 FDRMAT('D',' THF CUPFENT IS AGNZERD ALONG', T36,I3,T46,'SEGMENTS'I MAIN OIG FORMAT('0',' THE FREE SPACE WAVELENGTH IS', LPEI3.6.' AETERS') MAIN O2O FORMAT('1',' THE ELEMENTS of 2 ARE'।

MAIN 021
 FORMAT('1',' THE CURRENT JISTRIRUTIDN IS',T74,'THE EXCITATION CHECMAIN OZ
1K IS')
MAIN 024

```
FORMAT(' I',T19,'C(I)',r27,'MAGNITUDE',T53,'PHASE',TE2,'VCK(II') MAIN O25
```

FJRMAT ('0', ' THE INPUT IMPEDANCE IS ',1P2E14.5,' OHMS'I MAIN O2 0
FORMAT('0.,' THF INPUT ADMITTANCE IS',1P2E14.5,' MHOS') MAIN 027
FiJRMAT('0',' THE AC RESISTANCE PER SEGMENT IS ',IPEI4.5,' OHMS'I MAIN O2E
FOPMATIT7,'THETA',T2L, GTHETA',T36,'GPHI') MAIN OZO
FORMAT('1',' THF OIPECTIVE GAIN IS') MAIN 030
FORMAT('1')

MAIN 030

FORMAT(E13.7)
FITRMAT(13)
FORMAT (I4, 1P2E12.4,T40,I4,2E12.4,TBO,I4,2E12.41
MAIN 032

FORMATII4,1P4E14.5,T70,2E14.51
MAIN 034

```
FORMAT(IP3E14.5) MAIN 036
```



```
32
33
34
3.5
-36
    FORMATI'0',' THF ANTENNA EFFICIENCY IS ',F6.2,' PERCENT'I MAIN 043
    COMPLEX Z(251),ZR(126,126),C(126),VCK(126),CI,ZIN,YIN
    COMPLEX ZINP,YINP
    DIMENSION R(3,251),B(3,251), THETO(91),GTHETA(91),GPHI(91)
    CJMMON /COA/ 2 /COB/ 2R /COC/ C /CDD/ VCK
    COMMON /CIJNST/ CI,PI,XMU,EPSLN,BA,BH,HAFLEN,PITCH,PANG,NS,NEP.
    IWAVE,ONEG,BETA,OZ,TL.EN
    EQUIVALENCE (ZR(1,1),R(1,1)),(ZR(1,4),B(1,1))
    EQUIVALENCE (ZR(1,7),GTHETA(1)),(ZR(1,8),GPHI(1))
    EQUIVALENCE (ZR(1,9),THETU(1))
    PI = 3.14159265
C XMU = THE PERMEABILITY OF FREE SPACE
    XMU = 4.OE-7*PI
C EPSLN = THE PERMITTIVITY OF FREE SPACE
    EPSLN = 8.854E-12
    CI = (0.,1.)
    BA = THE RADIUS OF THE WIRE IN METERS
    READ(5,21, END=51) BA
    WRITE(6,1)
    WRITE(6,2) BA
C BH = THE MEAN HELIX RADIUS IN METERS
    READ(5,21) BH
    WRITE(6,3) BH
C HAFLEN = THE HELIX HALF LENGTH IN METERS
    READ(5,21) HAFLEN
    WRITE(6,4) HAFLEN
C PITCH = THE PITCH OF THE HELIX
    READ(5,21) PITCH
    FORMAT('0':' THE RADIATED POWER IS',T28,1PE14.5,' WATTS'I MAIN O3G
    FITRMAT('0',' THE INPUT RESISTANCE IS',T35,1PE14.5.' OHMS') MAIN O4O
    FORMAT('O',' THE DISSIPATION RESISTANCE IS'.T35.1PEI4.5.' OHMS'I MAIN 04I
    FORMAT('0'.' THE RADIATION RESISTANCE IS',T35,1PE14.5.0 OHMS') MAIN 042
    MAIN 043
    MAIN 045
    MAIN 045
    MAIN 047
    MAIN 048
    MAIN 049
    MAIN 050
    MAIN 051
    MAIN 052
    MAIN 053
    MAIN 054
    MAIN 055
    MAIN 056
    MAIN 057
    MAIN O58
    MAIN O59
    MAIN 060
    MAIN 0GI
    MAIN 062
    MAIN 063
    MAIN 064
    MAIN 065
    MAIN 066
    MAIN 067
    MAIN 068
    MAIN 069
    MAIN 070
```

```
        WRITE(6.5) PITCH
    PANG = HELIX PITCH ANGLE IN RADIANS
    PANG = ATAN2(PITCH,(PI*2.*BH))
C PANGL = HELIX PITCH ANGLE IN DEGREES
    PANGL = 180.*PANG/PI
    WRITE(6,6) PANGL
C. NS = NUMBER OF SEGMENTS WITH NON-ZERO CURRENT
    READ(5,22) NS
    WRITE(6,7) NS
    WAVE = THE FREE SPACE WAVELENGTH IN METERS
    REAO(5,21) WAVE
    WRITE (6,8) WAVE
C DZ = Z-DISTANCE BETWEEN ADJACENT SEGMENTS IN METERS
    DZ = 2.*HAFLEN/(NS+1)
C TLEN = THE LENGTH DF EACH SEGMENT IN METERS
    TLEN = OZ*SQRT((2.*BH*PI/PITCH)**2*1)
C NEP = THE ORDER OF THE REDUCED IMPEDANCE MATRIX LR
    NEP = (NS+1)/2
C DMEG = THE ANGULAR FREQUENCY IN RADIAN PER SECOND
    OMEG = 2.99793E8/WAVE*2.*PI
C BETA = THE PHASE CONSTANT OF FREE SPACE IN RADIANS PER METER
    BETA = 2.*PI/WAVE
C RSQ = AC RESISTANCF PER SQUARE FQR COPPER
C SQUAFS = NUMBER OF SQUARES PER SEGMENT
    SQUARS = TLEN/(2**PI*RA)
C RSEG = AC RESISTANCE PER SEGMENT
    RSEG = RSQ*SQUAPS
    WRITE(6,15) FSEG
    CALL CAZZ
C M.JDIFY Z TO ACCOUNT FOR THE FINITE CONDUCTIVITY OF COPPER
    Z(L)= Z(1)+RSEG
    WRITE (6,9)
    WRITE(6.10)
    ILIN=NS+2.5
```

MAIN 071
MAIN 072
MAIN 073
MAIN 074
MAIN 075
MAIN 076
MAIN 077
MAIN 078
MAIN 079
MAIN 080
MAIN 081
MAIN 082
MAIN 083
MAIN 084
MAIN 085
MAIN 086
MAIN 087
MAIN 088
MAIN 089
MAIN 090
MAIN 0 I
MAIN 092
MAIN 093
MAIN 094
MAIN 095
MAIN 096
MAIN 097
MAIN 098
MAIN 099
MAIN 100
MAIN 101
MAIN $1 C 2$
MAIN 103
MAIN 104
MAIN 105

```
        WRITE(6,23)(I,Z(I),I=1,ILIN) MAIN 106
C INITIALIZE C TO THE EXCITATION vOLTAGE
    NEPM1=NEP-1
    DO 201 I=1,NEPM1
    C(I)=(0.,0.)
    C(NEP)=(1.,0.)
    CALL SGEA(NEP)
    WRITE(G,11)
    WRITE(A,12)
    CALL CAZR(NS)
    CALL VCHK(NEP:
    PSUM=0.
    DO 103 I = I,NEP
    CMAG2=REAL(C(I))**2+AIMAG(C(I))**2
    CMAG=SDRT (CMAG2)
    PSUM=PSUM+CMAG2
    CPHA=ATAN2(AIMAG(C(I)),REAL(C(I))|#180./PI
103 WRITE(6,24) I,C(I),CMAG,CPHA,VCK(I)
YINP=C(NEP)
ZINP=1./YINP
WRITE(6,13) ZINP
WRITE(6.14) YINP
PIN=REAL(C(NEP))/2.
PDISS = RSEG*(PSUM-CMAG2/2.)
PRAD=PIN-POISS
RIN=REAL(ZINP)
ROISS=PDISS*RIN/PIN
RRAD=PRAD*RIN/PIN
EFFIC=PRAD/PIN*100.
WRITE(6,31) PIN
WUITE(5,32) PDISS
WRITE(6,3?) PRAD
WRITE(6,34) RIN
WRITE(6,35) RDISS
MAIN 107
MAIN 108
MAIN 109
MAIN 110
MAIN 111
MAIN 112
MAIN 113
MAIN 114
MAIN 115
MAIN 116
MAIN 117
MAIN 118
MAIN 119
MAIN 120
MAIN 121
MAIN 122
MAIN 122
MAIN 124
MAIN 125
MAIN 126
MAIN 127
MAIN 128
MAIN 129
MAIN 130
MAIN 131
MAIN 132
MAIN 133
MAIN 134
MAIN 135
MAIN 136
MAIN 137
MAIN 138
MAIN 139
MAIN 140
```

```
    WRITE(6,26) RPAU
    WRITE(6,37) EFFIC
    P.O=1.E+4
    DTHET=?。
    PHI=O.
CALL CORD
CALL GAINO(RO,DTHET,PHI,PRADI
WRITE(6,17)
WRITE(6,16)
IMAX=90/DTHET+1.5
WRITE(6,27) (THETD(I),GTHETA{I),GPHI(I),I=1,IMAX)
WRITE(6,20)
GO TO 50
continue
STDP
END
MAIN 141
MAIN 142
MAIN 143
MAIN 144
MAIN 145
MAIN 146
MAIN 147
MAIN 148
MAIN 149
MAIN 150
MAIN 151
MAIN 152
MAIN 153
MAIN 154
MAIN 155
MAIN 156
```

[^0]SUBRDUTINE CAZZ

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNVNNNNNNNNNNNNNN

RHO＝S ORT（RADI2－2ETA＊ 2 2） $P S I A=P S I R$
0
\sim
2
11
0
\sim
\sim
0
IF（RHO－AL）211．211．212

IF（RADI－10．＊AL）213，213，214
$R T=\operatorname{COS}(-B E T A * R A D I)+C I * S I N(-B E T A * R A D I)$
$Z A=Z E T A+A L$
$Z A M=Z E T A-A L$
$S Z A=S Q R T(R H O * * 2+Z A * * 2)$
$S Z A M=S Q R T(R H O * * 2+Z A M * * 2)$
SZAM＝SQRT（RHO＊＊2＋ZAM＊＊2）
$A I L=A L D G((Z A+S Z A) /(Z A M+S Z A M))$
$A 13=\left(Z A^{*} S Z A-2 A M * S Z A M+R H O^{*} * 2 * A I 1\right) / 2$ ．
PSII＝AII－BETA＊＊2／2＊＊（AI 3－2＊＊RADI＊AI2＋RAUI＊＊2＊AII） OPSI2＝－BETA＊（AI2－RADI＊AIL）＋RET306＊（AI4－3．＊RADI＊AI3 143．＊RADI＊＊2＊AI2－RADI＊＊3＊AI1）
SIC＝RT＊RPIAL8＊CMPLX（PSI1，PSI2）
$H I=(3.0-30.0 * 2 R 2+35 \cdot 0 * 2 R 4) / 40.0$

$A 1=H * D R+H i * D R 2 * O R$
$A 2=-2 R 2 / 6 \cdot 0-D R 2 / 40 \cdot 0 * 11 \cdot 0-12 \cdot 0 * 2 R 2+15 \cdot 0 \neq 2 R 41$ $43=D R / 60.0 *(3.0 * 2 R 2-5.0 * 2 R 4)$ $A 4=2 R 4 / 120.0$
PSII $=A O+X K O 2 * A 2+X K D 4 * A^{\prime}+$
SI $2=X K D * A I+X K D 3 * A 3$
PSIC＝RT／（4＊＊PI＊RAOI）＊CMPLX（PSI1，PSI2）

ゴ心～～
$\stackrel{+}{+}$

215 [F(I-2) 219,210.,217
CALZ 071
216 PSIA=PSIC
CAZZ 072
$21702(I-1)=C I *(B 1 *(C P A N G 2 * C O S(P 2 * D Z *(I-2))+S P A N G 2) * P S I B$
CAZZ 073 $2+($ PSIA-2.*PSIB+PSIC 1 *ROMEP)
216 continue
210 CONTINUE
CAZZ 074
CALZ 075 RETURN

CALZ 076
END
CALZ 077
CALZ 078

```
    SUAPOUTINE CAZR(NSI
C
    this surroutine is useu to calculate the elements of zr
    COMPLEX Z(251),ZR(126,126)
    COMMON /COA/ Z /COB/ ZR
    NEP=(NS+1)/2
    NEPM=NEP-1
    NSP2=NS+2
    DO 220 I=1,NEP
    0) ?20 J=1,NEP
220 2R(I,J)=2(IABS(I-J)+I)
    DO 22i I=1,NEPM
221 ZR(NEP,1)=2.0*ZR(NEP,1)
    OD 222 I=l,NEPM
    DO 222 J=1,NEPM
222 ZP(I,J)=ZR(I,J)+C(NSP2-I-J)
    RETUPN
    END
CAZR 001
CAZR 002
CAZR 003
CAZR 004
\(\begin{array}{ll}\text { CAZR } & 004 \\ \text { CAZR } 005\end{array}\)
CALR 006
\(\begin{array}{ll}\text { CALR } & 006 \\ \text { CAZR }\end{array}\)
CAZR 008
CAZR 009
CAZR 010
CAZR 011
CAZR 012
CAZR 013
CAZR 014
CAZR 015
CAZR 016

CAZR 017
\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE SGEA (N) & SGEA 001 \\
\hline C & & SGEA 002 \\
\hline C & THIS SUBROUTINE SOLVES THE COMPLEX LINEAR SYSTEM A*X=B WHERE & SGEA 003 \\
\hline C & \(A=N\) BY N COMPLEX COEPFICIENT MATRIX (DESTROYED) & SGEA 004 \\
\hline C & \(N=N U M B E R\) OF EQUATIONS AND UNKNOHNS & SGEA 005 \\
\hline C & \(B=N\) ELEMENT VECTOR (REPLACED BY SOLUTION VECTOR X) & SGEA 006 \\
\hline C & \(X=N\) ELEMENT UNKNOWN VECTOR (SOLUTION) & SGEA 007 \\
\hline C & THE METHOD USED IS GAUSS ELIMINATION WITH PARTIAL PIVOTING. & SGEA 008 \\
\hline C & THE PIVOT ELEMENT IS THAT ELEMENT IN THE PIVOT COLUMN WITH & SGEA 009 \\
\hline C & GREATEST NORM HHERE THE NORM USED IS & SGEA 010 \\
\hline C & \(\operatorname{NORM}(A)=|\operatorname{RE}(A)|+|I M(A)|\) & SGEA 011 \\
\hline C & THE EVALUATION OF THIS NORM IS MUCH FASTER THAN FOR THE EUCLIDEAN & SGEA 012 \\
\hline C & NORM AND GIVES NEARLY AS GOOD RESULTS. & SGEA 013 \\
\hline \multirow[t]{5}{*}{C} & & SGEA 014 \\
\hline & COMPLEX A (126, 126), B (126), RPIV,SAVE & SGEA 015 \\
\hline & COMMON/COB/A /COC/ B & SGEA 016 \\
\hline & NP1 \(=\) N+1 & SGEA 017 \\
\hline & \(N M 1=N-1\) & SGEA 018 \\
\hline \multirow[t]{5}{*}{C} & FORWARD SOLUTION & SGEA 019 \\
\hline & DO \(50 \mathrm{~J}=1\), NM 1 & SGEA 020 \\
\hline & \(\mathbf{J 1}=\mathbf{J}+1\) & SGEA 021 \\
\hline & PNORM \(=0\). & SGEA 022 \\
\hline & IMAX=J & SGEA 023 \\
\hline \multirow[t]{4}{*}{C} & SEARCH JTH COLUMN FOR PIVOT & SGEA 024 \\
\hline & DO \(11 \mathrm{I}=\mathrm{J}, \mathrm{N}\) & SGEA 025 \\
\hline & ANORM=ABS (REAL (A \((1, J)))\) + ABS (AIMAG (A (I, J) ) ) & SGEA 026 \\
\hline & IF (PNORM-ANORM) \(10,11,11\) & SGEA 027 \\
\hline \multirow[t]{2}{*}{10} & PNORM = ANORM & SGEA 028 \\
\hline & IMAX=I & SGEA 029 \\
\hline 11 & CONTINUE & SGEA 030 \\
\hline \multirow[t]{2}{*}{C} & INTERCHANGE ROWS IF NECESSARY & SGEA 031 \\
\hline & IF (IMAX-J) 20, 22, 20 & SGEA 032 \\
\hline \multirow[t]{3}{*}{20} & DO \(21 \mathrm{I}=\mathrm{J}, \mathrm{N}\) & SGEA 033 \\
\hline & SAVE=A ( \(J, I)\) & SGEA 034 \\
\hline & \(A(J, I)=A(I M A X, I)\) & SGEA 035 \\
\hline
\end{tabular}

C ELIMINATE ELEMFNTS RELOW DIAGONAL IN JTH COLUMN DO \(50 \quad \mathrm{I}=\mathrm{Jl}, \mathrm{N}\) SAVE=A(I,J)
DO \(40 \mathrm{JJ}=\mathrm{J}, \mathrm{N}\)
\(A(I, J J)=A(I, J J)-S A V E * A(J, J J)\)
B(I)=B(I)-SAVE*B(J)
50 CONTINUE
\(B(N)=B(N) / A(N, N)\)
C BACK SUBSTITUTION
DO \(601=1\), NMI
\(I R=N-I\)
DO \(60 \mathrm{~J}=1.1\)
\(J C=N P 1-J\)
\(B(I R)=B(I R)-A(I R, J C) * B(J C)\)
RETURN
END

SGEA 036
SGEA 037
SGEA 038
SGEA 039
SGEA 040
SGEA 041
SGEA 042
SGEA 043
SGEA 044
SGEA 045
SGEA 046
SGEA 047
SGEA 048
SGEA 049
SGEA 050
SGEA 051
SGEA 052
SGEA 053
SGEA 054
SGEA 055
SGEA 056
SGEA 057
SGEA 058
SGEA U5G
SGEA 060
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{sugrdutine vahk(m)} & \multicolumn{2}{|l|}{VCHK 001} \\
\hline C & & & VCHK & 002 \\
\hline c & this surroutine is used to multiply & the current oistribution c & VCHK & 003 \\
\hline C & THE keduced impedance zr to form the & Voltage check matrix vck. & VCHK & 004 \\
\hline \multirow[t]{6}{*}{C} & & & VCHK & 005 \\
\hline & COMPLEX ZR(126,126),C(126),VCK(126) & & VCHK & 006 \\
\hline & COMMON /COB/ \(2 R / C O C / C\) /CDO/ VCK & & VCHK & 007 \\
\hline & Co \(100 \mathrm{I}=1, \mathrm{~N}\) & & VCHK & 008 \\
\hline & \(\operatorname{VCK}(1)=(0.0,0.0)\) & & VCHK & 009 \\
\hline & OO \(100 \mathrm{~J}=1, \mathrm{~N}\) & & VCHK & 010 \\
\hline \multirow[t]{3}{*}{100} & VCK(I) \(=\operatorname{VCK}(1)+7 . \mathrm{R}(1, \mathrm{~J}) * C(J)\) & & VCHK & 011 \\
\hline & RETURN & & VCHK & 012 \\
\hline & END & & VCHK & \\
\hline
\end{tabular}
```

の
C THIS SUBROUTINE IS USEO TO GENERATE THE FOLLOWING ELEMENTS
C R(1,I) = X COORDINATE OF MIDPOINT OF ITH SEGMENT IN METERS
C R(2,1)=Y COORDINATE OF MIDPOINT OF ITH SEGMENT IN METERS
C R(3,I) = Z COORDINATE OF MIDPOINT OF ITH SEGMENT IN METERS
B(1,I) = X COMPONENT OF UNIT VECTOR ALONG ITH SEGMENT
B(2,I)=Y COMPONENT OF UNIT VECTOR ALONG ITH SEGMENT
B(3,I) = Z COMPONENT OF UINIT VECTOR ALONG ITH SEGMENT
COMPLEX ZR(126,126),CI
DIMENSION R(3,251),B(3,251)
COMMON /COB/ ZR
COMMON/CONST/ CI,PI,XMU,EPSLN,BA,BH,HAFLEN,PITCH,PANG,NS,NEP,
IWAVE,OMEG,BETA,DZ,TLEN
EQUIVALENCE (ZR(1,1),R(1,1)),(ZR(1,4),B(1,1))
P2=2.*PI/PITCH
SP=SIN(PANG)
CP=COS(PANG)
DU 10 [=1,NEP
Z=DZ*(I-NEP)
P2Z=P2*Z
SP2Z=SIN(P2Z.)
CP2Z=COS(P2Z)
R(1,!)=-BH*SP2Z
R(2,1)= BH*CP22
R(3,1)= Z
B(1,I)=-CP*CP22
B(2,I)=-CP*SP2Z
B(3,I)=SP
NM=NEP-1
DO 11 I=1,NM
K=NS+1-I
R(1,K)=-R(1,I)
R(2,K)=R(2,I)
SUBROUTINF CORD

```
CORD 001
CORD 002
CORD 003
CORD 004
CORD 005
CORD 006
CORD 007
CORD 008
CORD 009
CORD 010
CORD 011
CORD 012
CORD 013
CORD 014
CORD 015
CORD 016
CORD 017
CGRD 018
CURD 019
CORD 020
CORD 021
CORD 022
CORD 023
CORD 024
CORD 025
CORD 026
CORD 027
CORD 02 E
CORD 029
CORD 030
CORD 031
CORD 032
CORD 033
CORD 034
CORD 035
\[
R(3, K)=-R(3, I)
\]

CORD 036
\(B(1, K)=B(1, I)\)
\(B(2, K)=-B(2, I)\)
\(B(3, K)=B(3, I)\)
RETURN
CORD 037
CORD 038
CORD 039
END
CORD 040
CORD 042

SUBRQUTINE GAINO(RO, DTHET,PHI,PRADI GAIN OOI
THIS SUBROUTINE IS USED TO CALCULATE THE DIRECTIVE GAIN FOR BOTH GAIN 002 POLARIZATIONS AT A FIELD POINT WITH SPHERICAL CODRDINATES
RO, THETA, PHI WHERE
RO = RADIUS IN METERS
THETA \(=\) POLAR ANGLE IN DEGREES
PHI = AZIMUTHAL ANGLE IN DEGREES
THE GAIN IS EVALUATED FOR THETA RANGING FROM 0 TO 9G DEGREES IN
STEPS OF DTHET DEGREES ALONG A PATH WITH CONSTANT RO ANO PHI
\(X F=X\) CODRDINATE OF FIELD POINT IN METERS
\(Y F=Y\) COORDINATE OF FIELD POINT IN METERS
\(Z F=Z\) COORDINATE OF FIELD POINT IN METERS
ETHETA \(=\) THETA COMPONENT OF FAR FIELD
EPHI \(=\) PHI COMPONENT OF FAR FIELD
( GTHETA(J) = GAIN OF THETA POLARIZATION FOR THETA=J* ITHET (;PHI(J) = GAIN OF PHI POLARIZATION FOR THETA=J*ITHET
PRAD = RADIATED POWEP.

COMPLEX ZR(126,126),C(126),CI,C1,C2,ETHETA,EPHI
DIMENSION R(3,251),B(3,251), THETD(91),GTHETA(71), GPHI(91) COMMON /COB/ ZR /COC/ C
COMMON /CONST/ CI,PI,XMU,EPSLN,BA,BH,HAFLEN,PITCH,PANG,NS,NEP, 1 WAVE, OMEG,BETA,DZ,TLEN
EQUIVALENCE \((2 R(1,1), R(1,1)),(2 R(1,4), B(1,1))\)
EQUIVALENCE (ZR(1,7), GTHETA(1)),(ZR(1, 8),GPHI(1))
EQUIVALENCE (2R(1,9), THETO(1))
PHIR=PHI*PI/180.
SPH=SIN(PHIR)
\(C P H=C O S(P H I R)\)
ROSPH \(=R O * S P H\)
\(R O C P H=R \mathrm{C} * \mathrm{CPH}\)
ROK = EETA*RO
\(T L=-O M E G * X M U * T L E N /(4 * * P I * R O)\)
CI=TI*(CI*COS(ROK) +SIN(ROK))

GAIN 003
GAIN 004
GAIN 005
GAIN 006
GAIN 007
GAIN 008
GAIN 009
GAIN 010
GAIN 011
GAIN 012
GAIN OL3
GAIN 014
GAIN 015
GAIN 016
GAIN 017
GAIN OIE
GAIN 019
GAIN 020
GAIN 021
GAIN 022
GAIN 023
GAIN 024
GAIN 025
GAIN 026
GAIN 027
GAIN 028
GAIN 029
GAIN 030
GAIN 031
GAIN 032
GAIN 033
GAIN 034
GAIN 035
```

 RKRO=BETA/RO
 PISO=PRAD/(4.*PI*RO**2) GAIN 036
THE TR=0.
DTHR=DTHET*PI/180.
I MA X=90/D THET+1.5
DO 30 [:=1,IMAX
STH=SIN(THETR)
CTH=COS(THETR)
XF=ROCPH*STH
YF=ROSPH*STH
ZF=RO*CTH
ETHETA=(0.,0.)
EPHI=(0.,0.)
DO 20 J=1,NS
BTH=(B(1,J)*CPH+B(2,J)*SPH)*CTH-B(3,J)*STH
BPH=-3(1,J)*SPH+B(2,J)*CPH
RDR=R(1,J)*XF+R(2,J)*YF+R(3,J)*2F
ANG=PKRO*RDR
IF(J-NEP) 17,17,18
C?=C(J)
GO T0 19
C2=C(NS+1-J)
19 C2=C2*(COS(ANG)+CI*SIN(ANG))
ETHETA=ETHETA +BTH*C2
EPHI=EPHI+BPH*C2
ETHETA=C1*ETHETA
EPHI=Cl*EPHI
PTH=(REAL(ETHETA)**2*4IMAG(ETHETA)**2)/754.
PPH=(REAL(EPHI)**2+\DeltaIMAG(EPHI)**2.)/754.
THETO(I)=(I-1)*DTHET
GTHETA(I)=PTH/PISO
GPHI(I)=PPH/PISO
30 THETR = THETR + DTHK
RETURN
END
GAIN 039
GAIN 040
GAIN 041
GAIN 042
GAIN 043
GAIN 044
GAIN 045
GAIN 046
GAIN 047
GAIN 048
GAIN 049
GAIN 050
GAIN 051
GAIN 052
GAIN 053
GAIN 054
GAIN O55
GAIN 056
GAIN 057
GAIN 058
GAIN 059
GAIN 060
GAIN 061
GAIN 062
GAIN 063
GAIN 064
GAIN 065
GAIN 066
GAIN 067
GAIN 068
GAIN 069
GAIN 070

```
```


[^0]: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

