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I. INTRODUCTION 

The characteristics of wave propagation along helical structures 

have been utilized in several applications, including antennas and 

traveling wave tubes. In these applications an understanding of device 

characteristics can be obtained by solving Maxwell's equations subject 

to the appropriate boundary conditions. The device to be considered 

here is the normal mode helical dipole antenna (NrlHD). 

The helical antenna has many possible modes of radiation as discussed 

by Kraus [ 1]. The axial mode occurs when the circumference of the helix 

is on the order of one wavelength and is characterized by radiation along 

the axis of the helix. In this mode the helix is a broadband antenna, with 

axial radiation possible over a range of nearly one octave in frequency. 

An array of axial mode helices was built by Kraus [2] in 1952 for radio 

astronomy at Ohio State University. 

Another possible mode of radiation from a helix is called the normal 

mode, so named because the maximum radiation is in a plane normal to the 

axis of the helix. The normal mode occurs when the diameter of the helix 

is small compared to one wavelength. A NMHD is a he'ix radiating in the 

normal mode which is driven at its midpoint. 

The NMHD has several characteristics of interest from an engineering 

viewpoint. Since the helix is a slow wave structure as noted by Collin 

and Zucker [3] , the resonant length of a NMHD is shorter than that for 

a linear dipole for a given resonant frequency. Thus the NMHD has potential 

application in size reduction of antennas. Stephenson [4] has 
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characterized this size reduction by shortening factor s. For a NMHD 

with halflength h in its first resonance, s = Uh/X̂  where is the free 

space wavelength at the resonant frequency. 

The polarization of the radiation from a NMHD is, in general, 

elliptical, with a large axial ratio when the helix diameter is very 

small compared to a wavelength. Wheeler [5] has established a design 

criterion for which the radiation from a NMHD will be circularly polarized. 

The possibility of using a NMHD as a superdirective antenna was 

noted by Stephenson and Mayes [S], who calculated that in its second 

resonance the NMHD with s % 0.3 displayed greater directivity than the 

half-wave linear dipole antenna and that no sidelobes were present. These 

calculations were based upon an assumed sinusoidal current distribution. 

Lain, Ziolkowski, and Mayes [7] calculated and measured characteristics 

of the NMHD in its second and higher order resonances. Their calculations 

were also based upon an assumed sinusoidal current distribution. 

The problem of determining the current distribution along a helix 

has been approached in several ways. The helix has been approximated by 

an infinitely long sheath helix, for which Maxwell's equations can be 

solved, as by Li [8]. Sensiper [9] has an excellent review of wave 

propagation on helices and includes a solution of the infinite tape 

helix problem, assuming a real axial propagation constant. Klock [ 10] 

also solves the infinite tape helix problem, but for a complex axial 

propagation constant. Lain, Ziolkowski, and Mayes [7] found that the 

tape helix solution yielded a better approximation to the resonant 

frequency of a NMHD than did Li's sheath helix solution. It should be 
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noted that these solutions are for structures of infinite length and are 

not for a wire helix of finite length. 

Marsh [11] measured the current distribution along a helical antenna 

and interpreted the distribution in terms of three different traveling 

wave modes along the helix. His T mode is that mode which exists on a 
o 

small diameter helix and displays a large VSWR. Lain, Ziolkowski, and 

Mayes [7] measured current distribution along several helices and observed 

an approximately sinusoidal standing wave pattern along the antennas. 

At the present time no one has been able to solve analytically the 

finite length helix with circular conductor as a boundary value problem. 

As a result, all calculations predicting the behavior of the NMHD are 

based upon some assumed current distribution, usually sinusoidal. It 

is the purpose of this work to determine the current distribution for the 

NMHD by numerically solving the boundary value problem. Other character

istics of interest can easily be calculated from the current distribution. 

The antenna considered here is a NMHD where the helix is right-handed, 

and the conductor is assumed to be copper wire. The NMHD is assumed to 

be excited at its midpoint by a slice voltage generator as discussed by 

King [12]. This NMHD is examined in its first two resonant modes and 

the current distribution, input impedance, bandwidth, efficiency, and 

directive gain are calculated. 

The numerical technique used is the matrix method developed by 

Harrington [l3, 14]. In this method Maxwell's equations are applied to 

a thin conducting wire. A thin wire is one for which the length is much 

greater than the radius and the radius is much less than one wavelength. 
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The wire is then approximated by many segments. Then integrals are 

approximated by summations and derivatives by finite differences. A 

linear system of equations is then formed which can be solved to give 

the current distribution on the antenna for the assumed excitation. Once 

the current distribution is determined, the field pattern for the antenna 

can easily be calculated. 

Harrington and Mautz [l5] used this method to calculate the current 

distribution for several linear antennas. Strait and Hirasawa [16] 

applied this method to arrays of linear antennas. The matrix method was 

applied to arbitrary configurations of bent wires by Chao and Strait [l7]. 

While in principle Chao and Strait *s program could be used to solve the 

NMHD problem, practical considerations dictated that a new program be 

written. 

When many segments are necessary to approximate the antenna, most 

of the computer time used in the matrix method is consumed in the solution 

of the linear system to determine current distribution. Since the time 

required to solve a linear system by elimination is proportional to the 

cube of the order of the system for large systems, the system should be 

kept as small as possible if use of excessive computer time is to be 

avoided. When an antenna is symmetric about its midpoint, the order of 

the system can be reduced by a factor of almost one-half. Accounting 

for antenna symmetry thus allows the linear system to be solved about 

eight times faster than can be done without accounting for symmetry. Also 

note that the storage necessary for the linear system with symmetry con

sidered is about one-fourth that required if symmetry is ignored. Since 
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the program of Chao and Strait [171 was written for a general antenna, 

it does not account for symmetry. 

In solving a system of linear equations there are three factors 

which must be considered, especially if the system to be solved is large. 

These factors are speed, storage required, and accuracy. For a large 

system the time required to solve the system is approximately equal to 

3 3 
N T/3 for Gauss elimination and equal to N T for inversion, where N is 

the order of the system and T is the machine time required for one 

multiplication (one complex multiplication if the system is complex). 

To these multiplication times must be added the time required for the 

pivot search, if any. Pivot searching is done to minimize round-off 

error as discussed by Fox [18] and Wilkinson [19] . 

In Chao and Strait's [17] program the linear system for current 

distribution is solved by inversion. Unless the current distribution for 

many different excitations of the same antenna at the same frequency must 

be calculated, solution of the system by Gauss elimination as suggested 

by Fox [18] is about three times faster than by inversion, not counting 

the time spent in the pivot search. 

Pivot selection is usually done by either of two methods. The first 

method, partial pivoting, involves searching the pivot column for an 

appropriate pivot element. In the second method, complete pivoting, all 

elements below and to the right of the last pivot element are examined 

in the search for the next pivot element. In most pivot selection schemes 

the element with largest modulus is chosen as pivot. With real numbers 

the modulus is just the absolute value of an element, which can be 
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evaluated very quickly. With complex numbers, however, the evaluation of 

the modulus of an element is much slower. For example the IBM 360/65 

computer can evaluate an absolute value in less than one microsecond, 

while determining the modulus of a complex number requires over one 

hundred microseconds, using the CABS function in FORTRAN as noted in [20]. 

To illustrate the possible significance of pivot search time, 

consider subroutine LINEQ given by Chao and Strait [l7]. This routine 

looks much like IBM's MINV matrix inversion routine, modified for complex 

numbers. When LINEQ is used on the 360/65, the evaluation of CABS in 

the pivot search consumes as much time as the rest of the inversion 

process. A similar situation exists in the case of CGELG, a Gauss 

elimination routine available at the Iowa State University Computation 

Center. This complex pivoting routine also spends about as much time 

evaluating CABS in the pivot search as is needed to solve the system. 

Another possible pivot selection scheme involves choosing the element 

with greatest norm as pivot, where the norm used is the sum of the absolute 

value of the real plus the absolute value of the imaginary parts of the 

element. While this scheme usually results in use of a different pivot 

element than would be used when the modulus is evaluated, it should be 

noted that the modulus of the pivot element chosen by this norm scheme 

is never smaller than /ill times the modulus of the pivot element when 

selected for largest modulus. Extensive numerical examples were run 

which showed that use of this norm pivot selection scheme yielded accuracy 

comparable to that obtained using the time consuming modulus evaluation. 

Numerical examples showed that Chao and Strait's [l7] complex matrix 
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inversion routine LINEQ could be executed twice as fast using the norm 

pivot selection scheme as compared to the modulus scheme. 

After trying several methods to solve the linear system for the 

current distribution, it was concluded that Gauss elimination with partial 

pivoting using the norm pivot selection scheme suggested here should be 

used in the numerical solution of the NMHD because of the speed with 

which this method could solve the system. Numerical experiments indicated 

that for the systems solved here the accuracy of this method was similar 

to that obtained using a Gauss elimination routine with complete pivoting 

where the pivot was determined on the basis of modulus. The partial 

pivoting Gauss elimination routine used is subroutine SGEA listed in the 

Appendix, Note that this routine solves the linear system for current 

distribution about six times faster than LINEQ and about two and one-half 

times faster than CGELG. Note also that since the program developed here 

accounts for symmetry, the current distribution can be calculated about 

forty-eight times faster than would be possible using the program of 

Chao and Strait [17]. Since the numerical work done here required several 

hundred dollars worth of computer time, it is clear that the factor of 

forty-eight is quite significant. 

Since the NMHD in its second resonance is not a very efficient 

antenna, as noted by Stephenson and Mayes [6], the determination of 

radiation efficiency for the NMHD is an important part of this work. 

The program of Chao and Strait [l7] does not calculate radiation efficiency. 

Weeks [21] defines radiation efficiency to be the ratio of the radiated 

power to the input power. The input power and the radiated power differ 
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by the power dissipated by the antenna. The dissipated power is due to 

the ohmic loss of the copper wire. In order to account for the finite 

conductivity of copper, the a.c. resistance of each segment is calculated 

in the program developed here. Then the linear system to be solved for 

current distribution is modified to account for this a.c. resistance. 

After the current distribution has been found, the ohmic loss for each 

segment is calculated. The dissipated power is just the sum of these 

ohmic losses. The radiation efficiency is then easily obtained. 

Due to computational considerations, bandwidth is calculated from 

an equivalent circuit model for the antenna. The input impedance for 

the antenna is calculated for two frequencies near resonance, and then 

a series R, L, C circuit model is determined for the antenna as suggested 

by Jordan and Balmain [22]. The bandwidth of the antenna is then defined 

to be the bandwidth of this series model. Bandwidths calculated in this 

way gave close agreement with those found by calculating the input 

impedance of the antenna at many frequencies. Calculated bandwidths of 

a few tenths of one percent are found to give close agreement with those 

measured by Stephenson and Mayes [6] and Lain, Ziolkowski, and Mayes [7] 

for the NMHD in its second resonance. 

The computer program listed in the Appendix is suitable for numerical 

investigation of the characteristics of the NMHD. Current distribution, 

input impedance, radiation resistance, efficiency, and directive gain can 

be determined with this program. The numerical results given are found 

to agree reasonably well with the experimental work of Stephenson and 

Mayes [6] and also that of Lain, Ziolkowski, and Mayes [7]. 
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II. NUMERICAL METHOD 

The electric field E® scattered from a conductor placed in an 

impressed field Ê  is given by Harrington [23] as 

where 

E® = -j (i) A - V $ (1) 

_ — -jkR 

A = M-l -fci— (2) 

s 

1 -jkR 

cr = - ^ 7 . J (4) 

with angular frequency uu, vector magnetic potential A, scalar electric 

potential #, permeability jj,, surface current density J, propagation 

constant k, permittivity e, surface charge density a, and the distance 

from a source point on the surface s of the conductor to the field 

point is denoted by R. The boundary condition that tangential electric 

field be zero at the conductor surface is accounted for by 

A —S A — I 
n x F  =  - n X  E  ( 5 )  

A 
at the conductor surface where n is the unit vector normal to the 

surface of the conductor. 

If the conductor is a thin wire with length much greater than 

radius, and radius much less than a wavelength at the frequency of 

interest, we assume 
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i) current flows along the axis of the wire 

ii) current and charge densities are filaments of current I 

and charge CT on the wire axis 

iii) n X E ̂ = - n X E ̂ is applied only to the axial component 

of E at the surface of the conductor. 

Under these assumptions we can write 

-  4 ' - #  ( « )  

at the surface of the wire, and 

(7) 

r 

•jkR 
\J JKi 

A.TTT 
r 

where ̂  is the length variable along the wire axis and F denotes the 

path traced out by the wire axis. 

The axis of the wire is divided into N segments with the n̂  ̂segment 

denoted by starting point n , midpoint n, and termination point n , as 

shown in Fî re 1. The boundary condition that the current is zero at 

the ends of the wire is accounted for by the extra half segment at each 

end of the wire, as shown in Figure 1. The integrals of (7) and (8) 

are approximated by summations and the derivatives of (6) and (9) are 

approximated by finite differences as discussed by Henrici [24] and 
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Figure 1. Wire axis divided into N segments 
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m 

Varga [25]. With these approximations (6), (7), (8), and (9) can be 

written in the form 

- Ê (m) « -juuÂ (m) -  ̂ (10) 

at the surface of the wire, and 

_ N -jkR 
A(m) « 2 I(n) J dl (11) 

M 
n 

. T N -jkR 
§(m)«- S CT(n ) J 4-^ d^ (12) 

At ̂  
n"̂  

1 N _ -jkR 
$(m")«- Z CT(n") J (13) 

àl _ 
n 

where , and are the lengths of the segments from n to 

n"̂ , from n to n+1, and from n-1 to n, respectively. Since the a's are 

given in terms of a linear combination of the I's by (14) and (15), 

clearly the §'s of (12) and (13) can also be expressed as a linear com

bination of the I's, as can A in (11). Thus -E (m) can be expressed 
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as a linear combination of the I's, 

Let 

""id) 

[II = 

1(2) 

I(N) 

, and [v] = 

E(l) • 

Ê (2) • At, 

E ̂ (N) • At 
N 

(16) 

Since E=(m)A't = E (m)*At is a linear combination of the I s, we can write 
'u in m 

[Vl = [zlCi] (17) 

where the elements of [z] can be obtained by rearranging (10) through 

(15) into the form of (17). Note that an arbitrary element of [z"| is 

given by 

Z = Ê (m) .At /I(n) 
mn m 

"due to 
1(a)" 

(18) 

where 

E'-(m) Ê (m) on s. (19) 

"due to 
I(n)" 

due to 
I(n) 

In a typical antenna problem the elements of [v1 and the geometry 

of the wire axis are known, while the current distribution [I] is unknown. 

If the elements of [z"| can be calculated from the geometry, then the 
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current distribution can be obtained by solving the linear system of 

(17). In the computer programs of Strait and Hirasawa [16] and of 

Chao and Strait [17], the inverse of [Z] is calculated and then the 

current distribution is found using 

[i3=[zrtvl (20) 

Unless the current distribution for many different excitations [v] of 

the same antenna at the same frequency must be determined, solution of 

the linear system of (17) by Gauss elimination or one of the equivalent 

methods, is faster than forming the inverse of [zj. For large systems 

(17) can be solved approximately three times faster by Gauss elimination 

than by the corresponding inversion method as noted by Fox [18]. 

The integrals in (11), (12), and (13) are of the same form and will 

be denoted by 

ÂSÎÎ"/.. E (C) (21) 
n van 

n 

where R (C') is the distance between the point m and a source point 
mn 

on the segment as shown in Figure 2. Similarly, 

1 

n + 
n 

where R + +(C') is the distance between the point m and a source point 
m n 

on A-t + . Expressions for i}f(m ,n ), ijf (m ,n̂ ), and \jr(m̂ ,n ) follow 

directly. The evaluation of these ;|r integrals will be considered later. 
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Ç-axis 

mn 

Figure 2, Local cylindrical coordinate system 
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Let the segment be represented by a current filament I(n) and 

two filaments of net charge 

I(n), 9(n ) = - I(n) (23) 

where q = aA-t. The vector potential at m due to I(n) is, by (11), 

A(m) = I(n) I (m,n) 

due to 
I(n) 

(24) 

The scalar potentials at m and m due to the charges of (23) are, by 

(12) and (13), 

(̂m̂ ) =  ̂i|f(m̂ ,n̂ ) 
e 

(25) 

due to 

q(n̂ ) 

$(m̂ ) =  ̂ (m̂ ,n ) 

due to 

q(n ) 

(26) 

$(m") =  ̂i|f(m",n'*") 

due to 

q(n̂ ) 

(27) 

$(m ) 

due to 

q(n ) 

_ q(n ) 
i(m ,n ) (28) 
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The substitution of (23) into (25) through (28) gives 

§(m*) = I(n)[$(m̂ ,n̂ ) - i|r(m̂ ,n )] 

due to n 
segment 

th 
juJe 

(29) 

$(ra ) = -T̂  I(n)[̂ m ,n̂ ) - ijt (m ,n )] 

due to n 
segment 

th 
jUJe 

(30) 

Now the substitution of (24), (29), and (30) into (10) gives 

H '11 
Ê (m) = juup I(n)—̂  ̂(m,n) 

"due to 
I(n)" 

m  

+ [Krn̂ .n̂ ) -Km̂ .n )-̂ (m ,n''') +̂ (m ,n )] 
jtUeA-t/ 

m 

at the conductor surface. 

Note that 

(31) 

E ^ ( i n )  - M  =  E } ( m ) A t  
m -u m 

"due to "due to 
I(n)" I(n)" 

(32) 

The substitution of (32) into (31) gives 

E (m) 
"due to 

A-t = jtm I(n) A-t 'A-L i|t(m,n) 
m in n 

I(n)' 

+ [4; (m̂ ,n̂ ) - T|;(in̂ ,n ) - ̂  (m ,n̂ ) +i|' (m ,n )] 
J (JUG 

(33) 
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New the elements of [Z] can be found by substituting (33) into (18) 

which gives 

Z = jlUixA't • (̂m,n) 
mn m n 

+ [ijf (m̂ .n"̂ ) -i|r(m̂ ,n ) -i|r(n ,n"̂ )+i|r(m ,n )] (34) 

Since is easily obtained fran the geometry, all that remains 

to be done is the evaluation of the t integrals and then each element 

of [Z] can be calculated. 

Recall that 

= tir A, ' R (C) <21) 
n mn n 

where C ' is some integration point along the Ç-axis of a cylindrical 

coordinate frame in which the Q̂ axis is tangent to element A-t̂  at its 

midpoint n as shown in Figure 2. 

Harrington [13] suggests that R (Ç̂ ) be approximated by 

f 

+ (C-C')̂ ' , m 9̂  n 

(35) 

^ /r/.2 
1 

a" + (C)" , m = n 

where a is the radius of the wire. Let OL = A"[/̂ /2 . Then (21) can be 

written in the form 

• Cc mn. 



www.manaraa.com

19 

Harrington [13] gives formulas for evaluating (36) based on five-

term Maclaurin expansions for the Green's function. One formula is 

developed which converges well for small R, that is for R < 100:, and 

another is given which converges well for R ̂  100: . These formulas were 

used in the programs of Strait and Hirasawa [16] and Chao and Strait [17] 

and are also used here in subroutine CAZZ listed in the Appendix. 

Losses due to the finite conductivity of the wire can easily be 

accounted for. At high frequencies the resistance of each segment is 

due to the skin effect, as discussed by Hayt [26] and by Ad1er, Chu, 

and Fano [27]. The resistance per segment can be calculated using the 

formulas given in the popular ITT handbook [281. This resistance must 

be added to the seIf-impedance of each element, that is, to the diagonal 

elements of [Z], before the linear system of (17) is solved. 

In order to calculate the radiated (scattered) field, an appropriate 

numerical formula must be formed. Recall that the scattered field is 

given by 

For a field point remote from the antenna (a point in the far-field) the 

scalar potential need not be considered since it does not contribute to 

E ̂  =-juuA-V$ (1) 

the far-field of the antenna. It is convenient to work in the spherical 

coordinate system of Figure 3. Since only the 0 and é components of E ̂  

contribute to the radiation field, all that must be evaluated is 

E@(r) = -juuÂ (r) (37) 

Ê (r) = -jiuÂ (r) (38) 
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z 

X 

Figure 3. Spherical coordinate system for evaluation of vector 

potential A(r) 
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where |r| is sufficiently large that the field point is indeed in the 

far-field. 

The vector magnetic potential due to a filament of current is 

known to be 

re. • i ' ' ' 
r |r - r I 

where r denotes the field point, r ' denotes a source point on the 

filament, and F is the path traced out by the filament. This integral 

may be evaluated numerically using 

„ N I Àï - '.1 
A(r)  ̂Z - ° _ (40) 

n=l |r - r̂ l 

— — tîl 
where I At is the current element along the n segment located by 

n n 

position vector r̂  . For |r| » |r̂ |, this integral can be written as 

_ -jk|r - r I 
,, N I At e 

Note that cannot be neglected in the phase expression. 

Now for |r| » |r | we have 

|r - r I |r| - Irl cos § = r - r cos § (42) 
n  '  '  n  n o n  n  

where § is the angle between r and r as shown in Figure 3. Finally, 
n n 

tJie vector field may be calculated using 
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N _ jkr cos§ 
A (r) « ̂  Z I àl e " " (43) 
^  ̂  U n r  . a n  ^  o n=l 

and (43) can be substituted into (37) and (38) to find the far-field. 
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III. APPLICATION OF THE NUMERICAL METHOD TO THE NMHD 

In order to apply the matrix method of Harrington [13] to the NMHD, 

it is necessary to first examine the geometry of the NMHD. The wire axis 

of a NMHD is shown in Figure 4. This helix is characterized by mean 

diameter D, pitch p, and halflength h. The pitch angle y is given by 

Y = tan ̂  ̂  (44) 

The axis of the helix is assumed to lie along the z-axis with the feed 

point (midpoint) at x = 0, y = D/2, z = 0. The axis of the wire lies 

along the helix characterized by the parametric equations 

X = - I sin (45) 

M y = J cos j (46) 

where - h ̂  z ̂ h . The wire radius is denoted by a. 

The axis of the wire is divided into N equal length segments (plus 

two half-segments at the wire ends) where N is odd. The segments are 

numbered consecutively from one to N, from the segment with most negative 

z-component to that with most positive z-component, respectively. Note 

that the feed point is at the (N+l)/2 th segment. Bach segment n has 

— ^ 

a beginning point n , a midpoint n, and a termination point n . Let 

z~(n), z(n), and ẑ (n) denote the z-coordinate of n , n, and n , 

respectively. Clearly we can write 
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Figure 4. Geometry of a normal mode helical dipole 
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z(n) = Az(n - ̂  ̂ ̂  ) (47) 

• Ay 
2 (n) = z(n) - — (48) 

«L A y 
z (n) = z(n) + — (49) 

where Az = 2h/(N + 1) is the length of the projection of one segment 

onto the z-axis. The x and y coordinates of points n, n , and n̂  can 

easily be found by the substitution of (47), (48), and (49) into (45) 

and (46). 

Let A'C denote the length of each segment. This length can be 

evaluated using the line integral 

A z  

" Ï + 1]̂  dz (50) 
0 
along helix 

When (45) and (46) are substituted into (50), the result is 

A-t = AzC(̂ )̂  + 1]̂  (51) 

In addition to the coordinates describing the helix, unit vectors 

pointing along the helix are needed at all points n , n, and n . Let 

A _ A A -J-
b(n ), b(n), and b(n ) denote unit vectors along the wire axis at the 

— "Î" 
points n , n, and n , respectively. It is clear that 

 ̂y \ * r2TTz(n) n * . r2nz(n)n . * b(n) = - a cos v cos L - a cos v sin L ^  J  + a sxnv 
x' p y p z 

(52) 
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A  ̂ A A A A 
with similar expressions for b(n ) and b(n ), where â , â , and â  

are unit vectors along the x, y, and z axis respectively, of Figure 4. 

An arbitrary element of [Z] as given by (34) can be written in 

the form 

9 A A 
Z = jWu, t b "b (̂m,n) 
mn  ̂ m n 

+ ) - Km'",n ) - ilr(m ,n̂ ) + Km ,n )] (53) 

where 

• (»,••) =73-/ —R /r'l (54) 

M «m 

For the geometry considered here, ̂ (m,n) = ̂ (m ,n ) = t(m ,n ), 

- + + -
(̂m ,n ) = tjr (m,n4-l), and 'Km ,n ) = ̂ (m,n-l). Thus (53) can be 

written as 

m̂n ~ b̂  ' b̂  i|f (m,n) + [2i(r (m,n) - ijr (m,n+l) - t (m,n-l)] 

(55) 

Note that from the geometry it is obvious that the N elements of [z] 

can be written in terms of N distinct elements Ẑ , such that 

Z = Z 
mn r 

(56) 

where r = |m - nj +1. Thus we can write 

[Z] = 

Zl Zg 

2̂ "l 

N 

N 

(57) 
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In a similar manner we can write 

ilr(m,n) = i (58) 

where the form the sequence '''n+1 ̂  

=T|f(m,m) and = ̂ (1 , N̂ ). Thus (55) can be written as 

3̂  I m - n I+1 - • I m - n-11+1 • • I m - „+l I+11 

(59) 

This can be expressed in the form 

/• 

Z = jU) p, t B i|f + "s 
r r r 

A A 

è - ̂ *r+l ] . = 1 

- •t-i • W ' 

(60) 

where = b̂ ' i+r * Z's of (60) are calculated in subroutine CAZZ, 

listed in the Appendix. The $'s are evaluated in this routine using the 

formulas given by Harrington [13]. 

Now the problem symmetry must be considered. Recall that the 

linear system to be solved for current distribution is of the form 

[zlCi] = [v] (61) 

where [Z] is N by N (N odd) and [v] and [I] are both N-element column 

vectors. For the NMHD considered here, the excitation is assumed to be 

a unit amplitude voltage generator located at the midpoint of the 
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antenna. Under this assumption the elements of [v] are all zero, except 

for the (N+l)/2 th element, which is unity. Due to the symmetry of [z] 

and [v] , [ l] will have the form 

[I] = 
N+1 

' 2 

(62) 

Now the linear system can be written out as 

Zi Zg ... Z^ 

=2 =1 

N 

Define permutation matrix [j] such that 

I ° 1 

[J] = 

:i 
0 

i2 0 

+̂1 1 
2 • 

• 

:2 
0 

/i _ 
0 

(63)  

(64) 

Clearly the system of (63) can be written in partitioned form as 
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A a B 

T 
c 

Ja 

-T 
a 

B 

â J 

d d Ô 

e 
= 

1 

Jd Ô 

(65) 

where A, B, and J are (N+l)/2 by (N+l)/2 matrices, a, d, and 0 are 

(N+l)/2 element column vectors, and c, e, and 1 are scalar quantities. 

Note that superscript T denotes transpose. Multiplying out (65) gives 

Ad + ae + BJd = 0 

—T— *7* —» 
a d + ce + a JJd = 1 

B̂ d + Jae + AJd = 0 

(66) 

(67) 

(68) 

The equivalence of (66) and (68) can be shown by premuItiplying both 

sides of (68) by J to give 

JB̂ d + ae + JAJd = 0 (69) 

Note that JJ = I, the identity matrix, JAJ = A, and JBJ = B . Clearly 

T then, BJ = JB and the equivalence of (66) and (68) is shown. 

A reduced system of linear equations which can be solved for the 

current distribution can be formed from (66) and (67), such that 

A + BJ a 

21̂  c 

d 0 

e 1 

(70) 

This reduced system has order (N+l)/2. The elements of the coefficient 

matrix for the reduced system are just linear combinations of the Ẑ 's 

of (60) and are easily found. Subroutine CAZR, listed in the Appendix, 
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forms this coefficient matrix. Note that BJ is merely a resubscripting 

process which can be accomplished very quickly. 

The effect of finite wire conductivity is accounted for by adding 

the a.c. resistance per segment to that is, to the self impedance 

of each segment. 

The linear system of (70) is solved for the NMHD current distribu

tion using subroutine SGEÂ., listed in the Appendix. This is a Gauss 

elimination algorithm, as previously noted. In order to check the accuracy 

of the solution, subroutine VCHK is used. In this subroutine the cal

culated current distribution is used in (70) and the corresponding 

excitation is calculated. A cougarison of this with the assumed excita

tion can then be made. 

In order to calculate the directive gain of the NMHD, the total 

radiated power as well as the radiated fields must be calculated. The 

radiated fields are easily determined using (43), (37), and (38). In 

principle the total radiated power could be obtained by integrating the 

radiated power density over a sphere surrounding the antenna. It is 

simpler, however, to note that the radiated power equals the input power 

minus the dissipated power. The input power is just 

în " (VI*) (71) 

* 
where V is the amplitude of the source voltage and I is the complex 

conjugate of the antenna current at the midpoint. The power dissipated 

P. can be found by sunming the ohmic losses due to the a.c. resistance 
diss 

of each segment. Thus 
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fdiss = 2̂ - Z, I I(n)l (72) 
n—J. 

where is the a.c. resistance per segment. The radiated power is 

âd = - ̂ diss 

Since the radiation field of the NMHD contains both the 0 and the i 

components of electric field, and a comparison of each conçonent is of 

interest, directive gains for each component are defined such that 

| e  (r,e , < 5 ) | ^  

G„(r,e,«5) = ̂  2 (74) 
0 S 

o 

G,(r,e,«{) = ^ 2 (75) 
^ % 

2 
where S = P ,/(4nr ) and r is the distance from the antenna to the 

o rad 

far-field point of interest and Tj is the intrinsic impedance of free 

space. Subroutines CORD and GAIND are used to calculate these directive 

gains for the NMHD. 
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IV. NUMERICAL RESULTS 

The numerical method was applied to five NMHD's for both the first 

and second resonances. Each antenna consisted of twenty-five turns of 

A. W. G. number twelve copper wire. The axial halflength and the pitch 

of each helix was fixed at twenty-five centimeters and two centimeters, 

respectively. Only the diameter of the helix was varied in these numerical 

experiments. The dimensions of the antennas are given in Table 1. 

Table 1. Helix dimensions 

Antenna Halflength Pitch Diameter Pitch angle y 
designation cm. cm. cm. degrees 

HD - lOA 25 2 2.0 17.66 

HD - 13A 25 2 2.6 13.76 

HD - 16A 25 2 3.2 11.25 

HD - 18A 25 2 3.6 10.03 

HD - 20A 25 2 4.0 9.04 

The antennas of Table 1 were each approximated by two hundred fifty-

one segments, plus the extra half-segment at each end. Thus each turn of 

the helix was represented by about ten segments. The results of the 

numerical analysis of these antennas in the first and second resonances 

are summarized in Tables 2 and 3, respectively. The results include the 

free space resonant wavelength shortening factor s (s = Ah/X̂  for 

the first resonance and s = 4h/(3X̂ ) for the second resonance), input 
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Table 2, Summary of numerical results for first resonance 

Antenna Shortening r̂ad Efficiency Bandwidth Directivity 

designation meters factor s ohms ohms % % 0-component 

HD - lOA 1.8205 0.5493 27.73 27.26 98.3 6.62 1.542 

HD - 13A 2.2071 0.4531 19.65 19.10 97.2 4.08 1.523 

HD - 16A 2.6508 0.3772 14.20 13.58 95.7 2.71 1.508 

HD - 18A 2.9768 0.3359 11.60 10.94 94.3 2.10 1.499 

HD - 20A 3.3225 0.3010 9.61 8.91 92.8 1.50 1.492 
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Table 3. Summary of numerical results for second resonance 

Antenna Shortening \ad Efficiency Bandwidth Directivity 

designation meters factor s ohms ohms % % 6-component 

HD - lOA 0.6473 0.5150 9.95 9.22 92.7 1.06 2.853 

HD - 13A 0.8131 0.4100 6.70 5.88 87.8 0.68 2.614 

HD - 16A 1.0040 0.3320 5.10 4.20 82.4 0.50 2.279 

HD - 18A 1.1434 0.2915 4.44 3.50 78.8 0.45 2.060 

HD - 20A 1.2915 0.2581 3.93 2.94 75.0 0.42 1.889 
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resistance R. at resonance, radiation resistance R , at resonance, 
xn rad ' 

radiation efficiency, percent bandwidth, and directivity or maximum 

directive gain for the 9 component of the far-field. 

The results are presented graphically in Figures 5 through 9. The 

sidelobe level in the second resonance is shown in Figure 10. The 

measurements by Lain, Ziolkowski, and Mayes [?] of some of these character

istics for the second resonance are included on the appropriate figures 

for comparison. Stephenson and Mayes'[61 calculated directivity, based 

on an assumed sinusoidal current distribution, is included on Figure 8 

for comparison. 

For each resonance of each antenna a numerical solution was found 

at two wavelengths near resonance. By linear interpolation of the input 

reactance calculated at these two wavelengths, a good approximation to 

the resonant wavelength was obtained. The input resistance, radiation 

resistance, efficiency, and directivity at resonance were also found by 

linear interpolation. The slope of the input reactance near resonance 

and the input resistance at resonance were then used to obtain a R, L, C 

series equivalent circuit for the NMHD near resonance. The bandwidth 

of the NMHD was then defined to be the bandwidth of this equivalent circuit. 

Bandwidth was determined in this manner in order to reduce the total 

amount of computer time used. In preliminary numerical experiments in 

which the helices were approximated by one hundred fifty-one segments, 

bandwidth determined from the equivalent circuit was found to agree very 

closely with bandwidth obtained by extensive numerical experiments, where 

the latter bandwidth was defined to be the range of frequency over which 
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the input reactance was less than the input resistance at resonance. 

The numerical results also include the current distribution 

I = I along the antennas, as well as the directive gain patterns 

in the x-z plane for both components of far-field. These results are 

shown in Figures 11 through 20 for the NMHD'ô near their first resonances, 

and in Figures 21 through 30 for the NMHD's near their second resonances. 

The phase plots in Figures 21, 25, 27, and 29 indicate an abrupt change in 

phase angle i from -180° to +180°. This 360° change has no physical signi

ficance and is due to the way i is calculated, such that -180°^ ^< 180°. 

It should be noted that the choice of the number of segments to use 

in approximating the NMHD is a compromise. In general, the use of more 

segments will result in more accuracy in the solution, but will require 

more computer time and storage area. A reasonable way to choose the 

number of segments to use, and that used here, involves a comparison of 

two solutions to the problem. First the problem should be solved using 

a small number of segments, perhaps six per turn. Then the same problem 

should be solved using a greater number of segments. By comparing these 

two solutions one can ascertain if the solution seems to have converged 

to the degree required. If not, then the use of more segments is 

necessary. Of particular usefulness in this comparison are plots of 

the current distribution. For the NMHD's considered here it was found 

that the calculated current distribution was somewhat irregular when one 

hundred fifty-one segments were used, while the distribution was smooth 

when two hundred fifty-one segments were used. 
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c - first resonance 

A - second resonance 

pitch = 2 cm. 

1 1 I 1— 
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Figure 5. Shortening factor s as a function of mean helix diameter D 
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o - first resonance 

A - second resonance 
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Figure 7. Radiation efficiency as a function of shortening factor s 
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Figure 8. Directivity for 9-polarization as a function of 
shortening factor s 
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Figure 9. Sidelobe level as a function of shortening factor s 
at second resonance 
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Figure 10. Bandwidth as a function of shortening factor s 
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Figure 11. Current distribution for HD-lOA near first resonance, 0.5493 
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Figure 12. Directive gain for HD-lOA near first resonance, s = 0.5493 
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Figure 13. Current distribution for HD-13A near first resonance, 
s = 0.4531 



www.manaraa.com

o 
m M013A ESI SEGMENTS 

>.-2.2100 METERS 

O 

en 
ce 

2.00 
e-

1.00 
IN DEGREES 

0.00 
90 t 

f o 
OtM 

00 

z.oo 6.00 8.00 y.00 

IN DEGREES 90 t 

Figure 14, Directive gain for HD-13A near first resonance, s = 0.4531 
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Figure 15. Current distribution for HD-16A near first resonance, 
s = 0.3772 
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Figure 16. Directive gain for HD-16A near first resonance, s = 0. 
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Figure 17, Current distribution for HD-18A near first resonance, 
0.3359 
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Figure 18. Directive gain for HD-18A near first resonance, s = 0.3359 
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Figure 19. Current distribution for HD-20A near first resonance, 
0.3010 
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Figure 20. Directive gain for HD-20A near first resonance, s = 0.3010 
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Figure 21. Current distribution for HD-IOA near second resonance, 
s = 0.5150 
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Figure 22, Directive gain for HD-lOA near second resonance, s = 0.5150 
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Figure 23. Current distribution for HD-12A near second resonance, 
s = 0.4100 
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Figure 24. Directive gain for HD-13A near second resonance, s = 0,4100 



www.manaraa.com

57 

NOlSfl ESI SEGMENTS 
L-i.aayo meters 

Û_ 

ce 

'—>a> 

d-

o 
o 
—o 

0.50 
I IN METERS 

1.50 1.00 0 . 0 0  
a 

O 

r\j 

Ij |0 

a 
o 

0.50 1.50 0 . 0 0  1.00 
Z IN METERS caior'] 

Figure 25. Current distribution for HD-16A near second resonance, 
s = 0.3320 
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Figure 26. Directive gain for HD-16A near second resonance, s = 0,3320 
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Figure 27. Current distribution for HD-18A near second resonance, 
s = 0.2915 
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Figure 28. Directive gain for HD-18A near second resonance, s = 0.2915 
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Figure 29. Current distribution for HD-20A near second resonance, 
s = 0.2581 
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Figure 30. Directive gain for HD-20A near second resonance, s = 0.2581 
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V. DISCUSSION 

While the .lumber of numerical examples considered was small, the 

results do provide insight into the characteristics of the NMHD. Of 

particular interest are the calculated current distributions for the 

second resonance, shown in Figures 21, 23, 25, 27, and 29, If the current 

distribution were truly sinusoidal, then there would be a null in the 

current distribution at z = h/3. This value of z is indicated on the 

figures by a short vertical line. Note that the null actually occurs 

at a somewhat larger value of z. This null displacement indicates that 

the phase velocity for the finite helix is a function of position. This 

result has not, to the author's knowledge, been calculated previously. 

Note that the current distribution drops off rather abruptly near the end 

of the helix. This dropping off, or end effect, occurs along the last 

turn of the helix, and appears to be similar to the end capacitance effect 

for a linear dipole. The end effect indicates that the phase velocity is 

smaller near the helix end than near the midpoint. Also note that the peak 

in. the current distribution at about z = 0,17 is not as big as the peak at 

z = 0, This suggests that the propagation constant is complex, a result 

not surprising in view of the lossy wire conductor considered here. 

The radiation efficiency as a function of shortening factor is 

shown in Figure 7. Although the results shown are for only one size 

of copper wire, it is expected that the radiation efficiency for a 

NMHD would decrease as the diameter of the wire decreased. For example, 

when the wire size for HD-16A was reduced from number twelve to number 

eighteen in an additional numerical exançle, the calculated radiation 
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efficiency for the second resonance changed from about eighty-two percent 

to about seventy percent. 

As interesting comparison can be made between the second resonance 

input resistance calculated here and that measured by Lain, Ziolkowski, 

and Mayes [?], As shown in Figure 6 the measured input resistance, for 

a given value of s, is greater than the calculated here. This apparent 

discrepancy is probably due to the fact that the geometry for the 

measured antennas was different than that for those considered here. 

Both the measured and the numerically modeled antennas were resonant 

in the same frequency range. The measured antennas consisted of A. W. G. 

number sixteen tinned copper wire for which the a.c. resistance per unit 

length at the resonant frequency is, depending on the tin thickness, 

about four times that for the number twelve copper wire considered here. 

Thus the losses for the measured antennas should be greater than those 

for the antennas considered here, and the input resistance for the 

measured antennas should be greater than for those considered here. 

A comparison between the second resonance directivity determined 

here and the directivity that Stephenson and Mayes [6] calculated by 

assuming a sinusoidal current distribution is shown in Figure 8. The 

discrepancy for small values of s seems to be due to the fact that in 

the work of Stephenson and Mayes the diameter of the NMHD was assumed 

to be very small, so that the cross-polarized field was negligible. 

For the NMHD's considered here the cross-polarized field is not negligible, 

particularly for the small values of s. From Figure 30 where s = 0.2581, 

note that the directivity for the -̂polarization (the cross-polarization) 
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is about 0,18, while that for the 0-polarization is about 1.89. When 

these are added the result is 2.07, which agrees well with Stephenson 

and Mayes' calculated value. In a similar manner the two curves can 

be made to agree closely for s < 0.4. The discrepancy for s > 0.4 is 

not well understood, but it is probably due co the fact that the current 

distribution on a NMHD is not quite sinusoidal. 

The directivity for a linear half-wave dipole can be calculated 

to be 1.64 by assuming a sinusoidal current distribution. In one 

additional example the diameter of the helix was set to zero, such that 

the helix degenerated into a linear antenna. The directivity of this 

antenna was then calculated to-be 1.64. 

The ratio of the directivity for the 0-polarization to that for 

the d-polarization is also of interest. The square root of this direc

tivity ratio is equal to the axial ratio AR of the elliptically polarized 

field for the antenna. Kraus [ 1] develops a formula for axial ratio 

based on approximating a NMHD by a series of linear elements and loops. 

The formula is 

2pX 
AR = 2 I (76) 

When the axial ratio is calcr.lated for HD-ICA at its first resonance 

using (76), the result is 18.5. From Figure 21 the directivity ratio 

is found to be 339. The square root of this directivity ratio is 18.4, 

which compares very closely with that from Kraus' formula. In a similar 

manner the axial ratio determined from the results here for HD-20A in 

its first resonance is 8.41, compared to 8.44 using (76). 
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The sidelobe level calculated here for the second resonance is 

compared to that measured by Lain, Ziolkowski, and Mayes [?] in Figure 9. 

The agreement is pretty close, allowing for the somewhat different antenna 

geometries. In both the calculations and the measurements the sidelobe 

structure was found to disappear for s less than about 0.3. 

Second resonance bandwidths calculated here and those measured 

by Lain, Ziolkowski, and Mayes [7] are compared in Figure 10. Again 

the agreement is probably as close as can be expected, considering the 

differing geometries. 

In conclusion, the matrix method has been used to solve the NMHD 

problem, and has yielded results comparable to those obtained by other 

investigators. Of particular significance here are the results which 

indicate that the phase velocity along the finite helix is a function 

of position. This conclusion cannot be reached on the basis of the 

sinusoidal current distribution assumed by others, and would be quite 

difficult to measure. 

The computer program listed in the Appendix can be used for 

additional numerical investigations of the NMHD. The user is cautioned 

to consider his problem carefully before applying this program to an 

arbitrary NMHD. In particular, he should ascertain that the assumptions 

upon which this method is based are satisfied for his problem. 
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VIII. APPENDIX: COMPUTER PROGRAM LISTING 

This program calculates the current distribution, input impedance, 

radiation resistance, efficiency, and directive gain for a NMHD. The 

NMHD is assumed to be a right-handed helix with a copper wire conductor. 

The excitation is assumed to be a slice voltage generator of one volt 

peak amplitude located at the midpoint of the antenna. The program 

consists of a main program and six subroutines, which are listed after 

the main program. 

As written, the program allows a maximum of two hundred fifty-one 

segments to be used in the helix approximation. More segments can be 

used by changing the dimensioning statements. When compiled in H-level 

FORTRAN, the execution time for this program, using two hundred fifty-one 

segments to approximate the helix, is about fifty seconds on the IBM 

360/65 computer. 

While the program was written for copper conductors, other conductors 

can be used by changing line ninety-four in the main program. 

Note that while the program is written to calculate directive gain, 

power gain can be calculated if desired. In order to calculate power 

gain, line one hundred forty-seven of the main program should be changed 

to read 

CALL GAIND(RO,DTHET,PHI,PIN) 

If power-gain is calculated, line thirty of the main program should be 

changed to note this fact. 
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c  
c  
c  
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c  
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5  
6 
7  
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9  
1 0  
11 

1 2  
1 3  
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2 0  
2 1  
2 2  
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T H I S  P R O G R A M  A N D  I T S  A S S O C I A T E D  S U B R O U T I N E S  C A L C U L A T E  T H c  C U R R E N T  
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A N D  D I R E C T I V E  G A I N  T O R  A  H E L I C A L  D I P O L E  A N T E N N A  W I T H  
W A V E  =  F R E E  S P A C E  W A V E L E N G T H  I N  M E T E R S .  
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O F  O N E  V O L T  P E A K  L O C A T E D  A T  T H E  M I D P O I N T  O F  T H E  
T H E  A N T E N N A  I S  A S S U M E D  T O  B E  A  R I G H T - H A N D E D  
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E P S L N  =  8 . 8 5 4 E - 1 2  
C I  —  *  0 # , 1  * )  
B A  =  T H E  R A D I U S  O F  T H E  W I R E  I N  M E T E R S  
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W R I T E ( 6 , 5 )  P I T C H  
P A N G  =  H E L I X  P I T C H  A N G L E  I N  R A D I A N S  
P A N G  =  A T A N 2 ( P I T C H , ( P I * 2 . * 8 H ) )  
P A N G L  =  H E L I X  P I T C H  A N G L E  I N  D E G R E E S  
P A N G L  =  1 8 0 , * P A N G / P I  
W R I T E ( 6 , 6 )  P A N G L  
N S  =  N U M B E R  O F  S E G M E N T S  W I T H  N O N - Z E R O  C U R R E N T  
R E A D ( 5 , 2 2 )  N S  

N S  
F R E E  S P A C E  W A V E L E N G T H  
W A V E  
W A V E  

Z - O I S T A N C E  B E T W E E N  A D J A C E N T  
2 . * H A F L E N / ( N S + 1 )  

W R I T E ( 6 , 7 )  
W A V E  =  T H E  
R E A D ( 5 , 2 l )  
W R I T E ( 6 , 8 )  
D Z  =  
D Z  =  

I N  M E T E R S  

S E G M E N T S  I N  M E T E R S  

T L E N  =  T H E  L E N G T H  O F  E A C H  S E G M E N T  I N  M E T E R S  
T L E N !  = • •  D Z * S Q R T ( ( 2 .  +  B H * P I / P I T C H ) + * 2  +  l )  
N E P  =  T H E  O R D E R  O F  T H E  R E D U C E D  I M P E D A N C E  M A T R I X  Z R  
N E P  =  ( N S + l l / 2  
Q M E G  =  T H E  A N G U L A R  F R E Q U E N C Y  I N  R A D I A N  P E R  S E C O N D  
O M E G  =  2 . 9 9 7 9 3 E 8 / W A V E * 2 , * P I  
B E T A  =  T H E  P H A S E  C O N S T A N T  O F  F R E E  S P A C E  I N  R A D I A N S  P E R  M E T E R  
B E T A  =  2 . * P I / W A V E  
R S Q  =  A C  R E S I S T A N C E  P E R  S Q U A R E  F O R  C O P P E R  
R S Q  =  2 . 6 1 E - 7 * S Q R T ( 3 , E + 8 / W A V E )  
S O U A R S  =  N U M B E R  O F  S Q U A R E S  P E R  S E G M E N T  
S Q U A R S  =  T L E N / ( 2 . * P I * R A )  
R S E G  =  A C  R E S I S T A N C E  P E R  S E G M E N T  
R S E G  =  R S Q * S Q U A R S  
W R I T E ( 6 , 1 5 )  R S E G  
C A L L  C A Z Z  
M . 3 0 I F Y  2  T O  A C C O U N T  F O R  T H E  F I N I T E  C O N D U C T I V I T Y  O F  C O P P E R  
Z (  1  l = Z ( l ) + R S E G  
W R I T E ( 6 , 9 )  
W R I T E ( 6 , 1 0 )  
I L I N = N S + 2 . 5  

M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
MAIN 
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  
M A I N  

0 7 1  
0 7 2  
0 7 3  
0 7 4  
0 7 5  
0 7 6  
0 7 7  
0 7 8  
0 7 9  
080 
081  
082 
0 8 3  
0 8 4  
0 8 5  
086 
0 8 7  
088 
0 8 9  
0 9 0  
0 9 1  
0 9 2  
0 9 3  
0 9 4  
0 9 5  
0 9 6  
0 9 7  
0 9 8  
0 9 9  
100 
1 0 1  
10 2 
1 0 3  
1 0 4  
1 0 5  

•«J 
OJ 
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W R I T E ( 6 , 2 3 )  ( I , Z ( I ) , I = 1 , I L I N )  
C A L L  C 4 Z R ( N S )  

C  I N I T I A L I Z E  C  T O  T H E  E X C I T A T I O N  V O L T A G E  
N E P M 1 = N E P - 1  
D O  2 0 1  I = 1 , N E P M 1  

2 0 1  C ( I I = ( 0 . , 0 . I  
C ( N E P ) = ( 1 . , 0 . )  
C A L L  S G E A ( N E P )  
W R I T E ( 6 , 1 1 )  
W 9 I T E ( 6 , 1 2 )  
C A L L  C A Z R ( N S )  
C A L L  V C H K ( N E P I >  
P S U M = 0 .  
D O  1 0 3  1 = 1 , N E P  
C M A G 2 = « E A L ( C ( I ) ) * * 2 + A I M A G ( C ( I ) ) * * 2  
C M A G = S O R T ( C M A G 2 )  
P S U M = P S U M + C M A G 2  
C P H A = A T A N 2 ( A I M A G ( C ( 1 » ) , R E A L < C ( I  M  » * 1 8 0 . / P I  

1 0 3  W R I T E ( 6 , 2 4 )  I  » C ( I ) t C M A G  , C P H A , V C K { I  )  
Y I N P = C ( N E P )  
Z I N P = 1 . / Y I N P  
WRITB(6,13I ZINP 
W R I T E ( 6 , 1 4 )  Y I N P  
P I N = R E A L ( C ( N E P ) ) / 2 .  
P D I S S  =  R S E G * ( P S U M - C M A G 2 / 2 , )  
P R A D = P I N - P D I S S  
R I N = R E A L ( Z I N P )  
R D I S S = P D I S S * R I N / P I N  
R R A D = P R A D * R I N / P I N  
E P F  I C  =  P R A D / P I N * 1 U 0 .  
W R I T E ( f e , 3 1 )  P I N  
W H I T E ( 5 , 3 2 )  P D I S S  
W R I T E ( 6 , 3 ? )  P R A D  
W R I T E ( 6 , 3 4 )  P I N  
W R I T C - ( 6 , 3 5 )  R D I S S  

M A I N  1 0 6  
M A I N  1 0 7  
M A I N  1 0 8  
M A I N  1 0 9  
M A I N  1 1 0  
M A I N  1 1 1  
M A I N  1 1 2  
M A I N  1 1 3  
M A I N  1 1 4  
M A I N  1 1 5  
M A I N  1 1 6  
M A I N  1 1 7  
M A I N  1 1 8  
M A I N  1 1 9  
M A I N  1 2 0  
M A I N  1 2 1  
M A I N  1 2 2  
M A I N  1 2  3  
M A I N  1 2 4  
M A I N  1 2 5  
M A I N  1 2 6  
M A I N  1 2 7  
M A I N  1 2 8  
M A I N  1 2 9  
M A I N  1 3 0  
M A  I N  1 3 1  
M A I N  1 3 2  
M A I N  1 3 3  
M A I N  1 3 4  
M A I N  1 3 5  
M A  I N  1 3 6  
M A I N  1 3 7  
M A I N  1 3 8  
M A I N  1 3 9  
M A I N  1 4 0  
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W R I T E ( 6 , 3 6 )  R P A O  M A I N  1 4 1  
W R I T E ( 6 , 3 7 ,  E F F I C  M A I N  1 4 2  

lis ii 
C A L L  G A I N D ( R O , O T H E T , P H I  , P R A D ,  m a t m  t  

:::::::: :i: : 
IMAX=90/DTHETn.5 MAIN 150 
W R I T E(6,27) (T H E T D ( I ) f G T H E T A IÏ) f O P H I { I ) ,1=1, I M A X )  M A I N  151 

::i: !: 
EN6 MAIN 155 

MAIN 156 
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2 1 5  I F (  1 - 2 )  2 1 8 , 2 1 6 , 2 1 7  
2 1 6  P S I 4 = P S I C  
? 1 7  O Z d - l  ) = C I * ( B 1 * ( C P A N G 2 * C 0 S ( P 2 * D Z » (  I  

1 + ( P $ I A - 2 . * P S I B + P $ I C ) * R O M E P )  
2 1 8  C O N T I N U E  
2 1 0  C O N T I N U E  

R E T U R N  
E N D  

2 1 ) + S P A N G 2 l * P S I B  

C A Z Z  0 7 1  
C A Z Z  0 7 2  
C A Z Z  0 7 3  
C A Z Z  0 7 4  
C A Z Z  0 7 5  
C A Z Z  0 7 6  
C A Z Z  0 7 7  
C A Z Z  0 7 8  
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c  
c  
c  

220 

2 ? 1  

222 

S U B P O U T I N r -  C A Z R ( N S )  

T H I S  S U B R O U T I N E  I S  U S E D  T U  C A L C U L A T E  T H E  E L E M E N T S  O F  I R  

C O M P L F X  Z ( 2 5 1 ) , Z R ( 1 2 6 , 1 2 6  1  
C O M M O N  / C O A /  Z  / C O B /  Z R  
N E P = ( N S + l ) / 2  
N E P M = N E P - l  
N S P 2 = N S + 2  
D O  2 2 0  1 = 1 , N E P  
0 0  2 2 0  J = 1 , N E P  
I R { I , J I = Z ( I A B S ( I - J ) + 1 )  
D O  2 2 1  I = 1 , N E P M  
Z < ( N E P , I ) = 2 . 0 v Z R ( N E P , I )  
0 0  2 2 2  I = 1 , N E P M  
D O  2 2 2  J = 1 , N E P M  
Z R ( I , J I = Z R ( I , J ) + Z ( N S P 2 - I - J )  
R E T U R N  
E N D  

C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  
C A Z R  

001 
002 
0 0 3  
0 0 4  
0 0 5  
006 
0 0 7  
008 
0 0 9  
010 
011 
012 
0 1 3  
0 1 4  
0 1 5  
016 
0 1 7  
0 1 8  
0 1 9  
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SUBROUTINE SGEA (N) S3EA 001 
c  SGEA 002 
c  THIS SOBROOTINE SOLVES THE COMPLEX LINEAR SYSTEM A*X=B WHERE SGEA 003 
c  A = H BY N COMPLEX COEFFICIENT MATRIX (DESTROYED) SGEA 004 
c  N = NUMBER OF EQUATIONS AND UNKNOWNS SGEA 005 
c  B = N ELEMENT VECTOR (REPLACED BY SOLUTION VECTOR X) SGEA 006 
c  X = N ELEMENT UNKNOWN VECTOR (SOLUTION) SGEA 007 
c  THE METHOD USED IS GAUSS ELIMINATION WITH PARTIAL PIVOTING. SGEA 008 
c  THE PIVOT ELEMENT IS THAT ELEMENT IN THE PIVOT COLUMN WITH SGEA 009 
c  GREATEST NORM WHERE THE NORM USED IS SGEA 010 
c  NORM (A) = |RE(A) | + |IM (A) | SGEA Oil 
c  THE EVALUATION OF THIS NORM IS MUCH FASTER THAN FOR THE EUCLIDEAN SGEA 012 
c  NORM AND GIVES NEARLY AS GOOD RESULTS. SGEA 013 
c  SGEA om 

COMPLEX A (126,126) ,B (126) ,RPIV,SAVE SGEA 015 
COMMON /COB/ A /COC/ B SGEA 016 
NP1=N+1 SGEA 017 
NM1=N-1 SGEA 018 

c  FORWARD SOLUTION SGEA 019 
DO 50 J=1,NM1 SGEA 020 
J1=J+1 SGEA 021 
PNORM=0. SGEA 022 
IMAX=J S3EA 023 

c  SEARCH JTH COLUMN FOR PIVOT SGEA 024 
DO 11 I=J,N SGEA 025 
ANORM = ABS(REAL(A(I,J) ) ) +ABS (AIMAS (A (I,J))) SGEA 026 
IF(PNOBM-ANORM) 10,11,11 SGEA 027 

10 PNORM=ANORM SGEA 028 
IMAX=I SGEA 029 

11 CONTINUE SGEA 030 
c  INTERCHANGE ROWS IF NECESSARY S3EA 031 

IF(IMAX-J) 20,22,20 SGEA 032 
20 DO 21 I=J,N SGEA 033 

SAVE=A(J,I) SGEA 034 
A (J,I)=A(IMAX,I) SGEA 035 
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2 1  A d M A X ,  I  ) = S A V E  
S A V E = B ( J )  
B ( J  )  =  B (  I M A X )  
B ( I M A X ) = S A V E  

:  D I V I D E  P I V O T  E Q U A T I O N  B Y  P I V O T  
2 2  RPIV=(l. E + 0 0 , 0 . E + 0 0 ) / A(J,J) 

D O  3 0  I = J , N  
3 0  A ( J , I ) = A ( J , I ) * R P I V  

B ( J  )  =  B ( J ) * R P I V  
:  E L I M I N A T E  E L E M E N T S  B E L O W  D I A G O N A L  I N  J T H  C O L U M N  

D O  5 0  I = J l , N  
S A V E = A ( I , J )  
D O  4 0  J J = J , N  

4 0  A ( I , J J ) = A ( I , J J | - S A V E * A ( J , J J )  
B ( I  | = B ( I ) - S A V E * B ( J )  

5 0  C O N T I N U E  
B ( N ) = B ( N ) / A ( N , N )  

:  B A C K  S U B S T I T U T I O N  
D O  6 0  1  =  1 , N M l  
I R = N - I  
D O  6 0  J = 1 , I  
J C = N P 1 - J  

6 0  B ( I R I = B ( I R ) - A ( I R , J C I » 8 ( J C )  
R E T U R N  
E N D  

S G E A  0 3 6  
S G E A  0 3 7  
S G E A  0 3 8  
S G E A  0 3 9  
S G E A  0 4 0  
S G E A  0 4 1  
S G E A  0 4 2  
S G E A  0 4 3  
S G E A  0 4 4  
S G E A  0 4 5  
S G E A  0 4 6  
S G E A  0 4 7  
S G E A  0 4 8  
S G E A  0 4 9  
S G E A  0 5 0  
S G E A  0 5 1  
S G E A  0 5 2  
S G E A  0 5 3  
S G E A  0 5 4  
S G E A  0 5 5  
S G E A  0 5 6  
S G E A  0 5 7  
S G E A  0 5 8  
S G E A  0 5 9  
S G E A  0 6 0  

00 
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S U B » C I J T I N E  V C H K ( M )  V C H K  0 0 1  
C  V C H K  0 0 2  
c  T H I S  S U B R O U T I N E  I S  U S E D  T O  M U L T I P L Y  T H E  C U R R E N T  D I S T R I B U T I O N  C  B Y  V C H K  0 0 3  
c  T H ^  R E D U C E D  I M P E D A N C E  Z R  T O  F O R M  T H E  V O L T A G E  C H E C K  M A T R I X  V C K .  V C H K  0 0 4  
c  V C H K  0 0 5  

C O M P L E X  Z P ( 1 2 6 , 1 2 6 ) , C ( 1 2 6 l , V C K ( 1 2 6 )  V C H K  0 0 6  
C O M M O N  / C O B /  Z R  / C O C /  C  / C O D /  V C K  V C H K  0 0 7  
D O  1 0 0  1 = 1 , N  V C H K  0 0 8  
V C K (  I  ) = (  0 . 0 , 0 . 0 )  V C H K  0 0 9  
0 0  1 0 0  J = I , N  V C H K  0 1 0  

1 0 0  V C K ( I ) = V C K { I ) + 7 P ( I , J ) * C ( J )  V C H K  O i l  
R E T U R N  V C H K  0 1 2  
E N D  V C H K  0 1 3  

00 N) 
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S U B R O U T I N E  C O R D  C O R D  0 0 1  
c  C O R D  0 0 2  
c  T H I S  S U B R O U T I N E  I S  U S E D  T O  G E N E R A T E  T H E  F O L L O W I N G  E L E M E N T S  C O R D  0 0 3  
c  R ( l , n  =  X  C O O R D I N A T E  O F  M I D P O I N T  O F  I T H  S E G M E N T  I N  M E T E R S  C O R D  0 0 4  
c  R ( 2 , n  =  Y  C O O R D I N A T E  O F  M I D P O I N T  O F  I T H  S E G M E N T  I N  M E T E R S  C O R D  0 0 5  
c  R ( 3 , I )  =  I  C O O R D I N A T E  O F  M I D P O I N T  O F  I T H  S E G M E N T  I N  M E T E R S  C O R D  0 0 6  
c  B ( l , I )  =  X  C O M P O N E N T  O F  U N I T  V E C T O R  A L O N G  I T H  S E G M E N T  C O R D  0 0 7  
c  6 ( 2 , 1 )  =  Y  C O M P O N E N T  O F  U N I T  V E C T O R  A L O N G  I T H  S E G M E N T  C O R D  0 0 8  
c  B ( 3 , n  =  I  C O M P O N E N T  O F  U N I T  V E C T O R  A L O N G  I T H  S E G M E N T  C O R D  0 0 9  
c  C O R D  0 1 0  

C O M P L E X  Z R ( 1 2 6 , 1 2 6 ) , C I  C O R D  O i l  
D I M E N S I O N  R { 3 , 2 5 1 1 , 8 ( 3 , 2 5 U  C O R D  0 1 2  
C O M M O N  / C O B /  Z R  C O R D  0 1 3  
C O M M O N  / C O N S T /  C I , P I , X M U , E P S L N , B A , 8 H , H A F L E N , P I T C H , P A N G , N S , N E P ,  C O R D  0 1 4  

l W A V E , O M E G , B E T A , D Z , T L E N  C O R D  0 1 5  
E Q U I V A L E N C E  ( Z R ( 1 , 1 ) , R ( 1 , 1 ) ) , ( Z R ( 1 , 4 ) , 8 ( 1 , 1 ) >  C O R D  0 1 6  
P 2 = 2 . * P I / P I T C H  C O R D  0 1 7  
S P = S I N ( P A N G )  C O R D  0 1 8  
C P = C O S ( P A N G )  C O R D  0 1 9  
D O  1 0  1 = 1 , N E P  C O R D  0 2 0  
Z = D Z * ( I - N E P )  C O R D  0 2 1  
P 2 Z = P 2 * Z  C O R D  0 2 2  
S P 2 Z = S I N ( P 2 Z )  C O R D  0 2 3  
C P 2 Z =  C Q S ( P 2 Z )  C O R D  0 2 4  
R ( 1 , T ) = - B H * S P 2 Z  C O R D  0 2 5  
R ( 2 , \ ) =  B H * C P 2 Z  C O R D  0 2  6  
R ( 3 , I 1 =  I  C O R D  0 2 7  
B ( l , I  )  =  - C P * C P 2 Z  C O R D  0 2 8  
B ( 2 , I ) = - C P * S P 2 Z  C O R D  0 2 9  

1 0  B < 3 , I ) =  S P  C O R D  0 3 0  
N M = N E P - 1  C O R D  0 3 1  
D O  1 1  I = 1 , N M  C O R D  0 3 2  
K = N S + 1 - I  C O R D  033  
R ( 1 , K ) = - R ( 1 , I )  C O R D  0 3 4  
R ( 2 , K ) =  R ( 2 , I )  C O R D  0 3 5  
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R ( 3 , K ) = - R ( 3 , I )  
B ( l , K ) =  
B ( 2 , K ) = - B ( 2 , I )  
B ( 3 , K ) =  8 ( 3 , I )  
R E T U R N  
E N D  

C O R D  0 3 6  
C O R D  0 3 7  
C O R D  0 3 8  
C O R D  0 3 9  
C O R D  0 4 0  
C O R D  0 4 1  
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S U B R O U T I N E  G A I N D ( R O , D T H E T , P H I , P R  A D )  G A I N  0 0 1  
C  G A I N  0 0 2  
C  T H I S  S U B R O U T I N E  I S  U S E D  T O  C A L C U L A T E  T H E  D I R E C T I V E  G A I N  F O R  3 G T H  G A I N  0 0 3  
C  P O L A R I Z A T I O N S  A T  A  F I E L D  P O I N T  W I T H  S P H E R I C A L  C O O R D I N A T E S  G A I N  0 0 4  
C  R O ,  T H E T A »  P H I  W H E R E  G A I N  0 0 5  
C  R O  =  R A D I U S  I N  M E T E R S  G A I N  0 0 6  
C  T H E T A  =  P O L A R  A N G L E  I N  D E G R E E S  G A I N  0 0 7  
C  P H I  =  A Z I M U T H A L  A N G L E  I N  D E G R E E S  G A I N  0 0 8  
C  T H E  G A I N  I S  E V A L U A T E D  F O R  T H E T A  R A N G I N G  F R O M  0  T O  9 0  D E G R E E S  I N  G A I N  0 0 9  
C  S T E P S  O F  D T H E T  D E G R E E S  A L O N G  A  P A T H  W I T H  C O N S T A N T  R O  A N D  P H I  G A I N  0 1 0  
C  X F  =  X  C O O R D I N A T E  O F  F I E L D  P O I N T  I N  M E T E R S  G A I N  O i l  
C  Y F  =  Y  C O O R D I N A T E  O F  F I E L D  P O I N T  I N  M E T E R S  G A I N  0 1 2  
C  Z F  =  Z  C O O R D I N A T E  O F  F I E L D  P O I N T  I N  M E T E R S  G A I N  0 1 3  
C  E T H E T A  =  T H E T A  C O M P O N E N T  O F  F A R  F I E L D  G A I N  0 1 4  
C  E P H I  =  P H I  C O M P O N E N T  O F  F A R  F I E L D  G A I N  0 1 5  
C  I  G T H E T A ( J )  =  G A I N  O F  T H E T A  P O L A R I Z A T I O N  F O R  T H E T A = J * I T H E T  G A I N  0 1 6  
C  G P H I ( J )  =  G A I N  O F  P H I  P O L A R I Z A T I O N  F O R  T H E T A = J * I T H E T  G A I N  0 1 7  8  
C  P R A D  =  R A D I A T E D  P O W E R  G A I N  0 1 8  
C  G A I N  0 1 9  

C O M P L E X  Z R ( 1 2 6 , 1 2 6 ) , C ( 1 2 6 ) , C I , C I , C 2 , E T H E T A , E P H I  G A I N  0 2 0  
D I M E N S I O N  R ( 3 , 2 5 1 ) , B ( 3 , 2 5 1 ) , T H E T D ( 9 1 ) , G T H E T A ( 9 1 ) , G P H I ( 9 1 )  G A I N  0 2 1  
C O M M O N  / C O B /  Z R  / C O C /  C  G A I N  0 2 2  
C O M M O N  / C O N S T /  C I , P I , X M U , E P S L N , W A , B H , H A F L E N , P I T C H , P A N G , N S , N E P ,  G A I N  0 2 3  

1  W A V E , O M E G , B E T A , D Z , T L E N  G A I N  0 2 4  
E Q U I V A L E N C E  ( Z R ( 1 , 1 ) , R ( 1 , 1 ) ) , ( Z R ( 1 , 4 )  , B ( 1 , 1  )  )  G A I N  0 2 5  
E Q U I V A L E N C E  ( Z R ( 1 , 7 ) , G T H E T A ( 1  I ) , ( Z R ( 1 , 8 ) , G P H I (  1 ) )  G A I N  0 2 6  
E Q U I V A L E N C E  ( Z R ( 1 , 9 ) , T H E T O ( 1 ) )  G A I N  0 2 7  
P H I R = P H I * P I / 1 8 0 .  G A I N  0 2 8  
S P H = S I N ( P H I R )  G A I N  0 2 9  
C P H = C O S ( P H I R )  G A I N  0 3 0  
R O S P H = R C * S P H  G A I N  0 3 1  
R O C P H = R O * C P H  G A I N  0 3 2  
R O K = B E T A * R O  G A I N  0 3 3  
T 1 = - 0 M E G * X M U * T L E N / ( 4 . * P I » R 0 )  G A I N  0 3 4  
C 1 = T 1 * ( C I * C O S ( R O K ) + S I N ( R O K ) )  G A I N  0 3 5  
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R K R O = B E T A / R O  
P I S O = P R A D / ( 4 . * P I * R 0 + * 2 )  
T H E T R = 0 .  
D T H R = D T H E T * P I / 1 8 0 .  
I M A X = 9 0 / D T H E T + 1 . 5  
D O  3 0  I = 1 , I M A X  
S T H = S I N ( T H E T R )  
C T H = C O S ( T H E T R )  
X F = R O C P H * S T H  
Y F = R O S P H * S T H  
Z F = R O * C T H  
E T H E T  A = ( 0 « , 0 « l  
E P H I = ( 0 . , 0 , »  
D O  2 0  J = 1 , N S  
B T H = ( B ( 1 , J ) * C P H + B ( 2 , J ) * S P H ) * C T H - B ( 3 , J ) * S T H  
B P H=-a(1 , J ) * S P H + B ( 2 , J I * C P H  
RDR=R ( 1 , J ) * X F + R (2 , J ) * Y F + R (3 , J ) * Z F  
A N G = R K R O * R D R  
I F ( J - N E P )  1 7 , 1 7 , 1 8  

1 7  C 2 = C ( J )  
G O  T O  1 9  

1 8  C 2 = C ( N S + 1 - J »  
1 9  C 2 = C 2 * ( C 0 S ( A N G ) + C I * S I N ( A N G ) I  

E T H E T A = E T H E T A + B T H * C 2  
2 0  E P H I = E P H I + B P H * C 2  

E T H E T A = C 1 * E T H E T A  
E P H I = C 1 * E P H I  
P T H = ( R E A L ( E T H E T A ) * » 2 + A I M A G ( E T H E T A ) * * 2 ) / 7 5 4 .  
P P H = ( R E A L ( E P H I ) * * 2 + A I M A G ( E P H I ) * * 2 ) / 7 5 4 .  
T H E T D ( I ) = ( I - 1 ) * D T H E T  
G T H E T A ( I ) = P T H / P I S O  
G P H K  n  =  P P H / P I S O  

3 0  T H E T R = T H E T R + D T H R  
R E T U R N  
END 

G A I N  0 3 6  
G A I N  0 3 7  
G A I N  0 3 8  
G A I N  0 3 9  
G A I N  0 4 0  
G A I N  0 4 1  
G A I N  0 4 2  
G A I N  0 4 3  
G A I N  0 4 4  
G A I N  0 4 5  
G A I N  0 4 6  
G A I N  0 4 7  
G A I N  0 4 8  
G A I N  0 4 9  
G A I N  0 5 0  
G A I N  0 5 1  
G A I N  0 5 2  
G A I N  0 5 3  
G A I N  0 5 4  
G A I N  0 5 5  
G A I N  0 5 6  
G A I N  0 5 7  
G A I N  0 5 8  
G A I N  0 5 9  
G A I N  0 6 0  
G A I N  0 6 1  
G A I N  0 6 2  
G A I N  0 6 3  
G A I N  0 6 4  
G A I N  0 6 5  
G A I N  0 6 6  
G A I N  0 6  7  
G A I N  0 6 8  
G A I N  0 6 9  
G A I N  0 7 0  
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